988 resultados para Cucumis sativus L.
Resumo:
Management of cucumber fly (Bactrocera cucumis) has relied heavily on cover sprays of broad spectrum insecticides such as dimethoate and fenthion. Long term access to these insecticides is uncertain, and their use can disrupt integrated pest management programs for other pests such as whitefly, aphids and mites. Application of a protein bait spray for fruit fly control is common practice in tree crops. However, vegetable crops present different challenges as fruit flies are thought to enter these crops only to oviposit, spending the majority of their time in roosting sites outside of the cropping area. Perimeter baiting of non-crop vegetation was developed overseas as a technique for control of melon fly (B. cucurbitae) in cucurbits in Hawaii. More recent work has refined the technique further, with certain types of perimeter vegetation proving more attractive to melon fly than the sorghum or corn crops which are commonly utilised. Trials were performed to investigate the potential of developing a similar system for cucumber fly. Commercially available fruit fly baits were compared for attractiveness to cucumber fly. Eight plant species were evaluated for their relative attractiveness to cucumber flies as roosting sites. Differences were observed in the number of flies feeding at protein bait applied to each of the plants. Results are discussed in the context of the development of a perimeter baiting system for cucumber fly in cucurbit crops.
Resumo:
THE unusual amino acid beta-N-oxalyl-L-alpha, beta-diaminopropionic acid (ODAP), isolated from the seeds of Lathyrus sativus is a potent neurotoxin1−3. It produces biochemical changes in the brain typical of an excitant amino acid and is implicated in the aetiology of human neurolathyrism caused by eating the seeds of L. sativus 4−6. It may act as a glutamate antagonist: ODAP inhibits glutamate oxidation7 possibly by inhibiting glutamate uptake in bovine brain mitochondria; it also acts as a competitive inhibitor of glutamate uptake in certain strains of yeast8, and a similar process might occur at the synaptic level. Any effect of ODAP on glutamate uptake at synapses is significant in view of the neurotransmitter function of glutamate, which seems to be neuroexcitory as well as neurotoxic9−12. But Balcar and Johnston13 have shown with rat brain slices that ODAP does not inhibit the glutamate uptake by the high affinity system.
Resumo:
The seeds of Lathyrus sativus contain the unusual amino acid homoarginine. The possible breakdown of homoarginine to lysine and urea has been investigated with enzyme extracts prepared from the seedlings of L. sativus. The results indicate that there is no separate homoarginase enzyme but that the arginase present has about 5 per cent activity towards Image -homoarginine as compared to that obtained with Image -arginine. The enzyme does not show an absolute dependence on Mn2+ for activity and maximal activation of the enzyme has been realized with Fe3+. It is concluded that the breakdown of homoarginine through the urea cycle may only represent a minor pathway for the catabolism of this compound in this plant.
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
The chemical interaction between plants is known as allelopathy and it is related to the release of substances into the environment. The present study aimed at the evaluation of the allelopathic activity of the leaves of Leonurus sibiricus against the germination and initial growth of Raphanus sativus, Lactuca sativa, and Lepidium sativum. Chemical analyses showed the presence in the leaves of four major flavonoids (quercetin-3-O-alpha-L-rhamnopyranosyl-(1 > 6)-beta-D-galactopyranoside; rutin; hyperin, and isoquercetrin) and of three minor flavonoidic compounds (genkwanin, 3'-hydroxy genkwanin, and quercetin). Extracts, their chromatographic fractions and pure isolated flavonoids showed different biological activities. A methanol extract of leaves of Leonurus sibiricus caused significant reduction only in the germination of Lactuca sativa, with no effects on the germinative processes of Raphanus sativus and Lepidium sativum. Some chromatographic fractions, containing the flavonoids, showed inhibitory activity on the initial stages of root growth of all tested seeds. The isolated flavonoids, at the higher concentration tested (10(-4) M) seemed to be responsible for the inhibition of the germination, as well as the radical elongation. Among pure compounds, 3'-OH-genkwanin and quercetin showed the stronger antigerminative activity at the concentration of 10(-4) M, whereas the radical elongation was reduced by rutin, isoquercetrin and 3'-OH-genkwanin. All compounds, tested at concentrations ranging between 10(-5) and 10(-7) M, showed stimulatory activities.
Resumo:
Baccharis ulicina es una maleza ampliamente distribuida en los pastizales de la zona semiárida argentina. A fin de evaluar sus posibles efectos alelopáticos, se utilizaron extractos acuosos de B. ulicina (hoja, tallo, raÃz y planta entera) a dos concentraciones (50 y 150 g tejido/L agua) sobre la germinación y crecimiento inicial de Avena sativa, Lolium perenne y Raphanus sativus. Para cada especie se regaron 100 semillas y se mantuvieron a 25°C y oscuridad. Se registraron la germinación de las semillas y la longitud de coleóptilo / hipocótile (C/H) y radÃcula (R). Con los datos obtenidos se determinó: porcentaje de germinación, coeficiente de velocidad de germinación, vigor de la germinación, inhibición de la germinación, inhibición de la longitud de la radÃcula y del coleóptilo / hipocótile e Ãndice de vigor de radÃcula y de coleóptilo / hipocótile. Los extractos con alta concentración redujeron la germinación en promedio 65% mientras que inhibieron la longitud en 58,8% (C/H) y 93,3% (R) para A. sativa; 71,5% (C/H) y 87,9% (R) para L. perenne, y 93,8% (C/H) y 94,5% (R) para R. sativus. Se registró un evidente efecto fitotóxico de B. ulicina sobre las especies evaluadas, indicando que la alelopatÃa serÃa una estrategia ecológica de la especie.
Resumo:
Perimeter-baiting of non-crop vegetation using toxic protein baits was developed overseas as a technique for control of melon fly, Zeugodacus (Zeugodacus) cucurbitae (Coquillett) (formerly Bactrocera (Zeugodacus) cucurbitae), and evidence suggests that this technique may also be effective in Australia for control of local fruit fly species in vegetable crops. Using field cage trials and laboratory reared flies, primary data were generated to support this approach by testing fruit flies' feeding response to protein when applied to eight plant species (forage sorghum, grain sorghum, sweet corn, sugarcane, eggplant, cassava, lilly pilly and orange jessamine) and applied at three heights (1, 1.5 and 2 m). When compared across the plants, Queensland fruit fly, Bactrocera tryoni (Froggatt), most commonly fed on protein bait applied to sugarcane and cassava, whereas more cucumber fly, Zeugodacus (Austrodacus) cucumis (French) (formerly Bactrocera (Austrodacus) cucumis), fed on bait applied to sweet corn and forage sorghum. When protein bait was applied at different heights, B. tryoni responded most to bait placed in the upper part of the plants (2 m), whereas Z. cucumis preferred bait placed lower on the plants (1 and 1.5 m). These results have implications for optimal placement of protein bait for best practice control of fruit flies in vegetable crops and suggest that the two species exhibit different foraging behaviours.
Resumo:
Agent-oriented conceptual modelling (AoCM) approaches in Requirements Engineering (RE) have received considerable attention recently. Semi-formal modeling frameworks such as i* assist analysts in requirements elicitation and reasoning of early-phase RE. AgentSpeak(L) is a widely accepted agent programming language. The Strategic Rationale (SR) model of the i* framework naturally lends itself to AgentSpeak(L) programs. Furthermore, the Strategic Dependency (SD) component of the i* framework prescribes the interaction between the agents in a multi-agent environment. This paper proposes a formal methodology for transforming a SR model to an AgentS- peak(L) agent. The constructed AgentSpeak(L) agents will then form the essential components of a multi-agent system, MAS.
Resumo:
To enhance and regulate cell affinity for poly (l-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (l-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (l-lactide)-block-poly (l-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces.
Synthesis of 4-arm star poly(L-Lactide) oligomers using an in situ-generated calcium-based initiator
Resumo:
Using an in situ-generated calcium-based initiating species derived from pentaerythritol, the bulk synthesis of well-defined 4-arm star poly(L-lactide) oligomers has been studied in detail. The substitution of the traditional initiator, stannous octoate with calcium hydride allowed the synthesis of oligomers that had both low PDIs and a comparable number of polymeric arms (3.7 – 3.9) to oligomers of similar molecular weight. Investigations into the degree of control observed during the course of the polymerization found that the insolubility of pentaerythritol in molten L-lactide resulted in an uncontrolled polymerization only when the feed mole ratio of L-lactide to pentaerythritol was 13. At feed ratios of 40 and greater, a pseudo-living polymerization was observed. As part of this study, in situ FT-Raman spectroscopy was demonstrated to be a suitable method to monitor the kinetics of the ring-opening polymerization (ROP) of lactide. The advantages of using this technique rather than FT-IR-ATR and 1H NMR for monitoring L-lactide consumption during polymerization are discussed.