953 resultados para Controladores POD


Relevância:

10.00% 10.00%

Publicador:

Resumo:

干旱化问题将在全球环境变化下进一步加剧,并可能严重影响玉米。玉米是我国主要粮食和最重要的饲料作物,其重要性日益突出。水分是制约玉米产量的关键因子。为此,本研究利用大型活动遮雨棚对玉米进行了出苗后全程水分控制试验,研究大田条件下玉米不同生育期对不同土壤水分(包括水分充足well-watered, WW;适度干旱moderately stressed,MS;和严重干旱severely stressed,SS)的响应及适应机制。研究结果表明: 在吐丝和籽粒形成期,Ms对叶片相对含水量和相对电导率的影响没有达到显著或极显著水平,而SS则极其显著地降低叶片相对含水量和增加质膜透性。并且干旱胁迫下,夏玉米生育进程中保护酶SOD、POD和CAT活性基本呈现一致下降的态势,膜脂过氧化作用增强。短期干旱胁迫对SOD)和POD(在第十三叶期)保护酶有一定的激发效应,但此效应维持不长,其后骤降。 干旱会引起叶绿素a,b含量及总叶绿素含量的减少。MS下营养阶段的叶绿素含量没有明显变化,但随着MS的延续,叶绿素含量在生殖阶段显著降低。而SS的叶绿素含量最初就呈现降低并逐渐扩大。另外,在干旱胁迫下叶净光合速率(PN)和蒸腾速率(E)的降低因干旱强度和时间以及发育阶段而异,而且Ss所引起的不利影响更为凸现。SS显著降低营养和生殖阶段的水分利用效率( WUE),然而MS基本导致前中期WUE增加,后期则减少。 土壤干旱胁迫下,绿色LAI明显降低,特别是生殖时期最高穗位叶面积显著降低:地上部生物量积累在各生育期均为减少。而且,干旱显著减少各生育期的根干重,但MS对第十八叶期(V18)的根干重有短期的促进作用。干旱胁迫下,根冠比在不同生育时期有增有减。MS对第十七叶期(V17)的叶面积、抽雄吐丝出现、叶片展开、最终叶片数以及收获指数影响不大,但其却显著减少各阶段株高、叶面积(第十七叶期除外)、茎粗和生物量积累。随着MS的延续,产量性状诸如穗粒数、百粒重均为降低,而SS对各生育阶段所有生长特性、产量性状及收获指数的影响都较MS更为不利。 生育前期遭遇干旱,可使叶片展开明显迟缓,并且最终叶片数减少。尤其SS减少最终叶片数1~2片,并且延迟抽雄4—5 d,吐丝4—5 d,从而可能导致成熟期推迟。 植物器官的营养吸收动态在短期干旱作用和长期作用之间有所不同。而且P和K元素的积累方式也有别。基本上,干旱胁迫显著降低植物器官在不同生育期的全P和K元素的吸收,尽管后期一些器官诸如叶、鞘和茎等的吸收有所增加,特别是干旱严重影响了根的吸收能力,而且SS较MS对全P.K吸收影响更甚。总之,干旱所导致的生物量减少与植物器官的全P、K吸收的减少是相伴而生的。 与WW相比较,MS和SS的产量两年内分别降低了20,4%—26,1%和59.2%~84.5%,穗粒数分别降低了12.1%~19.7%和39,8%~88.1%,以及百粒重分别降低了2.1%~2.7%和17.7%—46,9%。研究进一步表明,干旱胁迫对多数玉米籽粒的营养品质有利。与WW相较而言,N含量、可溶性总糖、可溶性还原糖、Zn. Ca. Cu. Mg和Mn元素在MS下分别提高了5.9%,39-0%,97.5%,12.1%,4.4%,7.5%,6.1%和2.9%,而在SS下则分别提高了8.6%,99.3%,300.0%,27.8%,24.0%,1 5.3%,9.8%和7.9%。但是,一些玉米籽粒的营养品质诸如淀粉、P和K含量却受到干旱胁迫的不利影响,与WW相比较,MS使籽粒淀粉、P和K含量分别降低了8.3%.12.6%和3.7%,而SS则分别降低了33.3%, 14.6%和18.6%。粗脂肪含量则表现有所不同,与WW比较而言,MS对之有利,2年平均增加9.2%,而SS对之不利,2年平均减少11.3%。 总之,玉米生理生态特征、地上部各部分干物质生产、根系生长、营养吸收、产量性状、营养品质对干旱胁迫的响应和适应不仅依赖于干旱的严重程度(包括强度和时间),而且也依赖于玉米发育阶段。本研究认为,在半湿润地区水分缺乏的条件下,有限灌溉(最低土壤相对含水量55%士5%)在营养阶段抽雄前实施可行。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

紫茎泽兰(Eupatorium adenophorum Spreng.)种子萌发的温度范围是10-30 ℃,最适宜的萌发温度是25℃,高温显著抑制其萌发,35 ℃恒温即没有种子萌发。紫茎泽兰种子萌发对于光的需求为中等,在黑暗中发芽率为17%。紫茎泽兰种子萌发的pH 范围是5.0-7.0,最高发芽率是以蒸馏水为介质,其pH为5.7。紫茎泽兰种子的萌发率随着水势的加大而逐渐降低,在水势大于-0.7 MPa 条件下,即没有种子萌发。在盐分含量小于100 mM NaCl 条件下,其发芽率均大于65%;在盐分含量小于250 mM条件下,其发芽率仍大于10%,当盐分含量达到300 mM NaCl时,即没有种子萌发。紫茎泽兰种子在土壤表层其发芽率最高,当埋藏深度为1.5 cm时即没有种子萌发。根据我们所得的实验结果,对比其原产地的气候条件并结合我国的气候条件和土壤条件进行分析,我们预测紫茎泽兰未来在中国的分布范围将局限在云贵高原,尽管在某些气候和土壤环境适宜的条件下仍有可能会形成零星分布区。 研究了紫茎泽兰和飞机草(Eupatorium odoratum L.)在三种环境胁迫条件下(高温、低温、干旱)七种抗氧化酶活性的变化。结果表明:这三种环境胁迫都对两种植物的生物膜系统造成了损伤,造成了植物体内丙二醛含量的升高。紫茎泽兰在这三种环境胁迫条件下,DHAR活性都升高;SOD活性也都升高,但是在低温处理时与对照的差别并不明显;POD和GR活性在低温和干旱处理时升高,在高温处理时降低;CAT活性在高温和干旱处理时降低,在低温处理时升高;MDAR活性在在高温和干旱处理时降低,在低温处理时略微上升,但是与对照的差别并不明显;APX活性则在三种环境胁迫下表现各不相同。通过这些结果可以说明:DHAR对紫茎泽兰抵抗不良环境的损伤具有重要作用。 而飞机草的抗氧化酶系统的变化为:SOD、APX和DHAR在三种环境胁迫下酶活性都升高;CAT在高温胁迫下升高,而在低温和干旱胁迫下酶活性降低;POD和MDAR在高温和干旱胁迫下酶活性升高,而在低温胁迫下酶活性降低;GR在高温和干旱胁迫下酶活性升高,而在低温胁迫下保持不变。以上的研究结果说明,SOD、APX和DHAR是飞机草抵御环境胁迫的关键酶。 通过比较两种植物在温度胁迫下抗氧化酶系统的不同响应,我们研究发现:两种植物之所以对温度的忍耐性不同,在一定程度上是由于它们在温度胁迫时抗氧化酶系统所作出的不同响应,抗氧化酶系统很可能在两种植物抵抗温度胁迫过程中扮演重要角色,即通过有效调节抗氧化酶活性来减少植物体内有害物质-活性氧自由基的积累,从而减少对植物细胞膜的损伤。两者的差别主要是:紫茎泽兰在低温胁迫时,清除活性氧的抗氧化酶都增加,这就减轻了活性氧自由基在植物细胞中的积累,从而可以在一定程度上保护植物。但是,在高温胁迫时CAT, POD, APX, GR和MDAR酶活性并没有随着SOD活性的升高而升高,所以很有可能造成对细胞有毒害作用的H2O2累积,其结果就造成了紫茎泽兰在高温胁迫下叶片细胞膜的过氧化程度较强。而飞机草的情况正相反,在低温胁迫下飞机草叶片细胞膜的过氧化程度较强,抗氧化酶的协调上升出现在飞机草遭受高温胁迫时,而当其处于低温胁迫时抗氧化酶间的变化趋势则出现了很大分歧,这说明飞机草在高温胁迫时较低温胁迫时能够较好地保护自身遭受活性氧自由基的伤害。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

臭氧属于二次污染物,它是由机动车、工厂等人为源以及天然源排放的氮氧化物(NOx)和挥发性有机物(VOCs)等一次污染物在大气中经过光化学反应形成的。O3 是光化学烟雾的主要成分,可对植物生长产生抑制。近几十年来,全球O3 污染的格局正在发生着巨大改变。由于北美及西欧等经济发达地区采取了有效控制臭氧形成前体物的措施,其空气中的O3 浓度在减少,而亚洲等经济发展中地区的O3 形成前体物的排放却在急剧攀升,导致大气中O3 浓度显著增加。中国经济的快速发展以及汽车保有量的迅猛增加导致O3 前体物的大量排放,许多经济较发达的地区空气中的O3 浓度超过了75ppb。由于O3 污染将导致农作物产量显著降低,因此,亚洲尤其是中国O3 污染对本地区农业生产的影响引起了国内外科学家的广泛关注。然而,在中国开展的关于O3 对植物生长及生产影响的研究相对较少,但已有的几篇研究报道确实指出目前中国部分地区的O3 浓度可导致冬小麦产量大幅下降,并预测到2020 年由O3 污染将引起小麦产量进一步降低。 植物对臭氧的反应或敏感性取决于诸如叶片导度、叶片结构及生化解毒等很多方面。首先,由于高叶片导度将吸收较多的臭氧量,因此,叶片导度通常被认为是决定抗性最为重要的因子。处于湿润条件下的植物,通常具有较高叶片导度,受到臭氧危害的程度一般也较大。其次,植物抗氧化胁迫能力的大小也决定着其对臭氧的敏感性。同一植株的老叶首先表现出伤害症状,这是由于老叶的抗氧化能力差于新叶,体现在抗坏血酸和谷胱甘肽含量及抗坏血酸氧化物酶和谷胱甘肽还原酶活性低于新叶。另外,叶片对臭氧的敏感程度与其叶片结构关系密切,拥有较大的细胞间隙对抗污染特性至关重要,由于叶片上表面的栅栏组织较海绵组织致密,因此通常较早表现出伤害症状。 影响植物对臭氧反应的环境因子很多,诸如光照、水气压亏、温度等。由于臭氧主要通过气孔进入植物体内,因此目前的研究主要集中在能显著调节气孔导度的环境因子,如土壤水分状况和在未来可能会与大气中臭氧浓度同步增加的CO2 浓度。CO2 浓度升高可降低植物的气孔导度,因此,CO2 浓度升高可减少叶片对O3 的吸收量。同时,大气CO2 浓度升高可提高净同化速率,可导致气孔的部分关闭而减少蒸腾,从而显著提高植株的水分利用效率,最终促进作物生长并提高产量。然而,二者对作物产量的交互影响尚不明确。水分胁迫被认为是影响O3 对植株伤害的一个重要环境因子。与正常供水相比,水分胁迫常常伴随着气孔导度的降低,导致进入到植株体内的O3 量相对较少而减轻植株受到的伤害程度。然而水分供应不足本身将导致小麦生长降低及产量下降。因此,水分亏缺可能会保护植株免受O3 伤害,同时也可能会加剧对植株的胁迫。 高浓度臭氧环境下,植物表现出较低的气孔导度。但研究表明,对臭氧敏感性不同的植物其气孔导度对臭氧的反应程度不同。臭氧对气孔的作用将影响植物生产力,同时也将影响植物对其它环境胁迫如干旱等的反应。短时间臭氧熏蒸小麦导致叶片细胞膜系统受损、光合产物输出受阻;而长期受臭氧污染后,小麦叶片的光合速率、光化学效率、叶绿素含量和蔗糖含量均显著降低,并与臭氧剂量的大小和峰值出现的早晚有关。O3 浓度升高将抑制光合作用,减少气孔导度,加强呼吸作用,改变C 同化物分配,加快叶片的衰老。众多研究表明,O3 导致的光合能力下降主要是由Rubisco 最大羧化效率降低导致;而O3 对光合器官捕获光的能力及光合电子传递速率的影响是光合作用下降的另一个原因。 尽管已有不少关于不同物种间对O3 敏感性的种间差异研究,然而育种方法或育种地点对中国不同冬小麦品种的O3 敏感性的影响尚不清楚。因此,我们假设育种年代、育种方法及地点将交互影响冬小麦品种对O3 的生长及生理响应。为进一步明确基因对冬小麦O3 敏感性的控制,研究了普通六倍体冬小麦的近缘体对O3 敏感性的差异。CO2 浓度升高及干旱胁迫对小麦臭氧敏感性的影响也进行了研究。论文主要从生理生化、生长及产量水平上来阐释O3 浓度升高、CO3加倍、干旱对冬小麦生长及生产影响的机理。 本研究主要是在温室中的上部开口的生长箱(open-top chamber, OTC)中进行。先后开展了四个盆栽实验研究,主要目的是确定中国不同基因型冬小麦种或品种对臭氧的敏感性及其反应机理;确定CO2 浓度升高及干旱在减轻O3 伤害方面的作用及其机理。实验材料为中国不同年代选育出的小麦品种,即1745年至2004 年间选育出的20 个品种和7 个小麦材料。主要评价指标包括相对生长速率、异速生长系数、叶绿素荧光、抗氧化活性、可溶性蛋白质含量、膜酯过氧化、气体交换、光合能力、叶绿素含量、暗呼吸、生物量及籽粒产量。实验研究得到的主要结果如下: 1) O3 升高显著降低整株及地上和地下部分的相对生长速率,显著降低异速生长系数、可变荧光、最大光化学效率、量子产额、光化学淬灭系数以及电子传递速率,但提高了非光化学淬灭系数。冬小麦不同品种对O3 的敏感性随育种年代的增加而增大,并与对照植株相对生长速率呈正相关。尽管近年来环境中的O3 浓度比过去显著增加,但新近育出的品种对臭氧的抗性却没有表现出协同进化效应。通过杂交选育的品种对臭氧的敏感性大于通过引进的和重选的品种。从生长和光合生理上来看,不同小麦品种对臭氧的敏感性与育种地点没有相关性,表明冬小麦品种对臭氧的适应能力与其生长环境下的臭氧浓度无关。因此,对臭氧相对敏感的冬小麦品种主要是由培育中较高相对生长速率或较高光合能力的杂交育种方式决定的,而与选育地点环境中的臭氧浓度无关。 2) 臭氧显著降低叶片中抗坏血酸(AsA)和可溶性蛋白的含量,但提高了过氧化物酶(POD)的活性和膜酯过氧化物(MDA)的含量。臭氧浓度升高抑制饱和光强下的净光合速率(Asat),降低气孔导度(gs)和总叶绿素含量,而显著提高暗呼吸速率(Rd)和胞间CO2 浓度(Ci)。臭氧导致总生物量降低,但地下部生物量受到的影响大于地上部。不同基因型小麦对臭氧的潜在敏感性与实际观察到的抗臭氧能力存在很大差异。冬小麦品种对臭氧的敏感性与臭氧环境下植株气孔导度和暗呼吸速率相关。臭氧导致Ci 浓度升高以及膜酯过氧化,由此得出臭氧导致的净光合速率主要是由于臭氧降低了叶肉细胞活性及细胞膜的完整性。新品种对臭氧相对敏感,主要是由于其具有较高的气孔导度抗氧化能力下降幅度较大以及较低的暗呼吸速率,从而对蛋白和细胞膜完整性造成较高的氧化伤害。 3) 臭氧对冬小麦光合和生长的影响存在着显著的种间差异。原初栽培种表现出最大的抗性,当代品种次之,而野生种对臭氧最为敏感。在普通冬小麦不同基因组供体中,钩刺山羊草(Aegilops tauschii,DD)对臭氧最敏感,其次为栽培一粒小麦(T. monococcum,AA),而圆锥小麦(Triticum turgidum ssp.Durum,AABB)对臭氧的抗性最大。因此,当代冬小麦品种对臭氧的敏感性可能是与其D 染色体供体-钩刺山羊草对臭氧敏感有关,而与其A、B 染色体供体-圆锥小麦的关系相对较小。 4) CO2 浓度升高提高了老品种和新品种的Asat,最大羧化速率(Vcmax),最大电子传递速率(Jmax)、光和CO2 饱和光合速率(Amax)。与之相反,臭氧显著降低了这些生理参数。虽然两品种对CO2 的响应没有显著性差异,但CO2浓度升高均有效保护了臭氧对它们的伤害。这种效应与CO2 浓度升高引起的气孔导度降低无关,而与代谢活性的提高有关。 5) 水分胁迫和臭氧分别都显著降低了 Asat 和gs。干旱显著降低Vcmax 和羧化效率(CE),而对Jmax 和暗呼吸(R)的影响不显著。臭氧显著降低冬小麦不同基因型的Vcmax,Jmax,R 和CE。二者均降低了生物量的积累及最终籽粒产量。与六倍体小麦相比,四倍体小麦对干旱相对敏感,但对臭氧却表现出较高抗性。干旱降低了气孔导度从而显著减少了植株对臭氧的吸收量,但两基因型的反应截然不同。干旱使臭氧对六倍体小麦产量和收获指数的伤害分别减少了约16%和50%,而干旱对该四倍体小麦的保护效应不大。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在果实采后贮藏过程中,病原真菌的侵染会引起果实腐烂,造成巨大的经济损失。利用生物和非生物因子诱导果实抗病性,已经成为采后病害防治领域的一个研究热点。本文主要利用RT-PCR和RACE技术克隆果实抗病相关基因,通过分子杂交和蛋白羰基化免疫检测技术,研究了外源SA和酵母拮抗菌诱导果实抗病性机理,结果表明: 1. 通过优化RNA提取方法,能从含有多糖的冬枣、葡萄、甜樱桃、桃、番茄等果实中提取到质量较好的RNA,用于RT-PCR和Northern杂交。 2. 采用RT-PCR和RACE方法,从甜樱桃果实克隆了两个抗氧化相关基因CAT2(Genbank:EF165590)和GPX(Genbank:EF165591)和两个PR基因GLU-1(Genbank:EF177487)和GLU-3(Genbank:EF177488)。其中CAT2全长cDNA序列为1479 bp,编码492个氨基酸;GPX全长cDNA序列为513 bp,编码170个氨基酸;GLU-1全长cDNA序列为1050 bp,编码349个氨基酸;GLU-3部分cDNA序列为454 bp,编码141个氨基酸。 3. 酵母拮抗菌Pichia membranaefaciens处理不同成熟度的甜樱桃果实,能显著降低果实贮藏期间青霉病(Penicillium expansum)的发生,并且对低成熟度果实的病害防治效果更为明显。酵母拮抗菌的抑病机理与减轻了甜樱桃果实蛋白羰基化程度,诱导了果实抗氧化酶基因(CAT和GPX)和PR基因(GLU-1)的表达和提高了抗氧化酶(CAT和GPX)和β-1,3-葡聚糖酶的活性有关。 4. 四种酵母拮抗菌P. membranaefaciens, Cryptococcus laurentii, Candida guilliermondii和Rhodotorula glutinis处理桃果实,可显著降低贮藏期间的褐腐病(Monilinia fructicola)。这是由于酵母拮抗菌能抑制病原菌侵染造成的氧化胁迫和蛋白羰基化。此外,酵母拮抗菌处理还能显著诱导CAT、POD、几丁质酶、β-1,3-葡聚糖酶活性及相应基因的表达。 5. 水杨酸(SA,2 mM)处理采后不同成熟度的甜樱桃果实,能显著降低青霉病的危害。其抑病机理与SA处理能减轻P. expansum侵染引起的果实蛋白羰基化程度,显著提高CAT、GPX和β-1,3-葡聚糖酶基因的表达和相关的酶的活性有关。而2 mM的SA处理对P. expansum的生长没有直接抑制作用。 6. 水杨酸(SA,2 mM)与P. membranaefaciens(1×108 CFU/ml)配合处理能显著降低低温贮藏期间桃果实的褐腐病,并能提高几丁质酶、β-1,3-葡聚糖酶和POD的活性和相关基因的表达。另外,2 mM的SA对拮抗菌P. membranaefaciens的生长没有影响,但能够抑制病原菌M. fructicola的孢子萌发和菌丝扩展。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

钾是作物生长发育的必需矿质元素,缺钾对大豆产量和营养品质影响显著。硅是植物的有益元素,在低钾胁迫条件下,硅对大豆生长是否有改善作用还未见相关报道,本研究以对低钾敏感的不同基因型大豆品种(铁丰35和铁丰31)为试验材料,在低钾条件下(1 mmol L-1),施加Na2SiO3,通过大豆生物量、根系形态学、生理学和抗氧化物酶活性等参数的变化,研究硅在大豆缺钾胁迫生长中的作用。主要研究结果如下: 1低钾胁迫对大豆生长发育和生理指标形状的影响 与正常钾生长条件(5 mmol L-1)相比,对低钾敏感的基因型大豆品种铁丰35,低钾胁迫使铁丰35品种主根、侧根,过氧化氢 (H2O2)和丙二醛含量(MDA),根系和叶片的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性和光合特性指标等发生显著变化,同样地,铁丰31品种根系的SOD、CAT、POD活性和MDA含量也发生显著变化。相反,铁丰31品种的其它形态学和生理学指标参数受低钾胁迫影响差异不显著。 2 Si和Na+对大豆生长发育和生理过程中低钾胁迫的减缓作用 为探明Si对大豆生长发育和生理过程中低钾胁迫的减缓作用,我们将Na2SiO3分别设立3个浓度处理水平(0.1, 2.0, 5.0 mmol L-1),对照CK0:5.0 mmol/L KNO3+0.0 mmol/L Na2SiO3,副对照CK1:1.0 mmol/L KNO3+4.0mmol/L NaCl,其中以Si2处理是2个品种减缓低钾胁迫效应最好的,对大豆生长发育和促进大豆根、茎和叶内钾浓度含量,低钾胁迫使SOD、POD、CAT活性,H2O2和MDA含量,以及光合特性(Pn, WUE)等指标参数得以显著地改善,但Na2SiO3对低钾敏感品种铁丰35的减缓作用远大于对低钾不敏感的品种铁丰31。为排除Na2SiO3中Na+对低钾大豆的生长作用,用等浓度NaCl进行检验,结果表明,Na+可以部分地减缓低钾胁迫,并且这减缓作用远小于等浓度的Si。本试验结果说明Si通过改变几个关键的生理过程,进而提高低钾胁迫条件下,大豆生长发育的表达活力,以有效地改善低钾对大豆生长的胁迫。 3 Si通过提高抗氧化胁迫进而减缓大豆生长发育中低钾胁迫 低钾胁迫使大豆地上和地下生物产量与对照CK0相比显著减少,增施Na2SiO3前后大豆其根冠比、过氧化氢积累、钾含量、膜质过氧化产物和抗氧化物酶活性变化显著。另外,Na2SiO3显著减缓了低钾胁迫使大豆根冠比、提高了低钾大豆根、茎、叶内钾浓度,Si还减缓了过氧化氢 (H2O2)和丙二醛含量(MDA),这说明Si抑制了低钾的过氧化胁迫,显著地抑制了因低钾胁迫而使超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)等活性的升高,这些酶活性提高效应被施加的Na2SiO3消除,这些结果表明,Si通过提高抗氧化胁迫能力,进而减缓大豆生长发育的低钾胁迫,对低钾胁迫有非常重要的减缓调控作用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本研究选用抗盐冬小麦品种—德抗961(DK961)和盐敏感品种—济南17(JN17)为试验材料。一方面,研究了冬小麦对盐分及臭氧胁迫的生理生态响应机制;另一方面,探讨了外源硝酸钾对小麦盐伤害的缓解机理,提出了盐胁迫下小麦优质高产的栽培技术规程。主要结论如下: 1 冬小麦产量与品质对不同浓度盐胁迫的响应 同一小麦品种在不同盐浓度胁迫下产量和品质存在显著差异,不同小麦品种在同一盐分浓度胁迫下产量和品质也有显著差异,说明盐胁迫下小麦产量和品质与小麦品种特性和耐盐性关系密切。在对照栽培条件下,两小麦品种的产量次序为JN17>DK961;在轻度(0.3%)盐胁迫下,耐盐品种仍获得了较高的产量(仅下降5.8%),而盐敏感品种下降幅度较大(为22.9%),此时的产量次序为DK961>JN17;DK961在0.5%盐胁迫下,产量较对照处理下降9.7%,而JN17下降了54.3%;在0.7%盐浓度环境中,DK961和JN17产量均出现了大幅降低,但DK961的产量仍显著高于JN17。 盐胁迫下的小麦品质指标表现为:在0.3%和0.5%盐浓度下,随着盐浓度的升高,蛋白质含量升高,淀粉含量下降;当盐浓度达到0.7%时,两者都快速下降。 2 不同耐盐性冬小麦品种对盐胁迫的生理生态响应 2.1品种与盐浓度对小麦生长特性的影响 盐胁迫造成了小麦的后期衰老加快,光合速率降低,生育期缩短。但这种影响会因小麦的耐盐性不同而有很大的差异:DK961在轻、中度盐浓度(0.3%、0.5%)下,生育期与无盐处理时无显著差异,但当盐浓度达到0.7%时,生育期出现了明显的缩短;相反,JN17生育期在各个盐浓度下都出现了显著变化。对盐敏感品种,盐胁迫导致小麦出苗期、拔节期推迟3-5 d,抽穗期和开花期提前6-7 d,成熟期提前10-15 d。盐胁迫对小麦生育期的影响主要是缩短生殖生长期。 2.2品种与盐浓度对小麦生理代谢的影响 不同冬小麦品种对盐胁迫产生的生理反应程度不同,耐盐小麦品种在一定的盐浓度范围内,盐胁迫症状不明显,生理反应比较迟钝,光合速率、气孔导度、光饱和点等基本维持在无盐处理的水平,丙二醛和活性氧清除酶活性增加不显著;盐敏感品种在各种盐浓度胁迫下或耐盐品种在过重的盐分浓度胁迫下,盐胁迫症状极为显著,小麦植株生长矮小,光合速率、气孔导度、光饱和点等大幅下降,丙二醛和活性氧自由基含量大幅上升,严重的情况下,小麦植株不能正常生长,甚至出现“干死”现象。 3 盐胁迫下冬小麦生理生态特征对臭氧浓度升高的响应 3.1 臭氧污染对小麦生理代谢的影响 3.1.1对小麦叶片气体交换的影响 气孔是小麦叶片与外界气体交换的“大门”,是臭氧进入叶片的主要通道,控制着蒸腾、光合、呼吸等重要生理过程。通常,高浓度臭氧环境中,小麦表现出较低的气孔导度。气孔的这种反应是植物限制臭氧进入叶片中的一种避害机制。 臭氧的强氧化性导致高浓度臭氧环境中小麦的光合速率下降。臭氧通过气孔进入叶片后,对植物叶片光合作用的抑制主要是由Rubiso酶含量/活性的降低引起的。研究发现,臭氧低于某一临界值时,产生的氧化伤害可以被植物体的抗氧化系统清除而不会对光合作用产生抑制,而高于该临界值时由Rubsico限制引起的光合速率降低将与臭氧吸收量呈线性关系。高浓度臭氧环境下,植物光合作用降低的生理原因,主要是臭氧导致叶绿素和可溶性蛋白分解,叶片衰老加快、叶绿体结构发生改变、活性氧清除酶活性升高,而与碳素固定有关的酶活性降低、光合产物向外运输受阻而导致的反馈抑制。 3.1.2对小麦生长特性的影响 研究表明,环境中臭氧浓度升高可引起小麦生长特性发生巨大改变。臭氧污染首先加快老叶的衰老,而对新叶的影响很小。然而老叶衰老能够将其中的营养转移到新生长叶片中,有利于维持植株的生长。臭氧环境下,老叶迅速衰老的同时,同一植株中的新生组织具有较高的Rubisco合成速率和总量,同化速率加强。这一现象被认为是植株在臭氧环境下的一种补偿机制。臭氧显著降低植株同化物向根系的分配,而同化物向根系分配的改变将导致根系与整株植物功能关系的改变。在水分亏缺环境下,植物根系的生长受到抑制,导致根系对土壤营养吸收能力的降低,从而间接降低叶片的光合速率。 3.2 盐胁迫引起的生理响应提高了小麦抵御臭氧伤害的能力 试验结果表明,盐胁迫引起的小麦生理响应(如,气孔导度降低、抗氧化酶活性升高等),显著增强了小麦抵抗臭氧伤害的能力。但这种保护作用是相对的,因为盐胁迫本身已对小麦生长产生显著的抑制作用。 3.2.1 气孔导度下降减少了臭氧的进入 研究发现,臭氧是通过气孔进入植物体内的,而盐胁迫引起的小麦气孔导度下降,显著减少了臭氧进入小麦体内的量,大大减轻了臭氧对小麦的伤害。本实验中,无盐栽培条件下,臭氧引起的小麦光合速率降低,达到了显著水平;而盐胁迫下,由臭氧引起的小麦光合速率降低,未达到显著水平。这说明盐胁迫引起的气孔导度降低,起到了减轻臭氧对小麦生长抑制的作用。 3.2.2 渗透调节能力的增强弱化了臭氧的伤害 盐胁迫引起的可溶性糖、可溶性蛋白、脯氨酸等渗透调节物质含量的升高,大大增强了小麦抵御臭氧伤害的能力。如,臭氧往往造成植物蛋白质的分解,降低蛋白质含量;但盐胁迫下,可溶性蛋白含量是上升的,两方面协调,维持了植株蛋白质水平,促进了小麦生长。另一方面,渗透调节物质的积累,有利于小麦同化物的合成、转化和运输,加快了循环的节奏,这也是盐胁迫降低臭氧对小麦伤害的重要原因之一。 3.2.3 抗氧化能力增强降低了臭氧的氧化伤害 盐胁迫引起的小麦酶促保护系统抗氧化酶(SOD、POD等)活性升高,提高了小麦体内活性氧清除能力。臭氧污染可产生大量的活性氧自由基,对小麦产生强氧化伤害,抑制小麦生长。通常情况下,臭氧胁迫也可引起小麦抗氧化酶活性的提高,来适应这种污染环境。本实验表明,在盐和臭氧的交互作用下,小麦抗氧化酶活性的升高呈现了叠加效应,小麦的活性氧清除能力大大加强,减缓了小麦衰老进程,有利于小麦生长。 4 外源硝酸钾对冬小麦盐胁迫伤害的缓解机理及高产栽培技术规程 4.1 不同浓度硝酸钾处理对盐胁迫下小麦幼苗生理代谢的影响 植株体内K+/Na+比值是衡量小麦抗盐性的一项重要指标。盐胁迫下,小麦体内Na+含量快速上升,而K+含量相对下降,K+/Na+比值快速降低,打破了植株体内离子平衡,对小麦造成Na+“单盐毒害”,严重抑制小麦生长。可溶性糖、脯氨酸等低分子量渗透调节物质含量升高;膜质过氧化程度加重,电解质外渗量及丙二醛含量升高;活性氧自由基增多,抗氧化酶活性升高。 外源KNO3显著提高了小麦植株组织内K+/Na+比值,盐胁迫症状减轻,可溶性糖、脯氨酸等低分子量渗透调节物质含量比单独NaCl胁迫时降低;膜质过氧化程度减轻,电解质外渗量及丙二醛含量降低;活性氧自由基减少,抗氧化酶活性恢复到接近正常水平。但过量施用硝酸钾同样不利于小麦的生长。实验结果表明,小麦生长环境中最佳的K+/Na+ = 16:100。 4.2 抽穗期叶面喷施硝酸钾对盐胁迫下小麦花后生长及籽粒产量的影响 根据小麦生长环境中最佳的钾/钠 = 16:100的实验结果,设计了对100 mM NaCl生长环境中小麦抽穗期叶面喷施10 mM KNO3溶液试验(Hoagland 营养液中已含6 mM KNO3),得出外源硝酸钾有利于盐胁迫下小麦生长的恢复及籽粒产量的提高,DK961和JN17的穗粒数分别比单纯盐胁迫时提高了1.9%和7.1%;千粒重分别提高了2.3%和2.8 %;产量分别提高了4.5%和12.3%;叶面喷施钾肥后,盐胁迫对耐盐小麦产量指标影响变小,小麦各项指标恢复到接近于对照水平。盐敏感小麦品种受到盐胁迫的伤害较重,产量下降幅度较大,施钾肥后小麦盐胁迫症状虽有改善,但仍与对照相差较远。所以,盐胁迫下小麦高产优质栽培中,耐盐品种的选用是首要的。 4.3外源硝酸钾对盐胁迫下花后小麦旗叶气体交换的影响 盐胁迫下小麦叶面喷施钾肥,旗叶光合速率在灌浆期比不施钾处理显著升高,且维持高光合速率时间延长,小麦后期衰老速率减缓。由于施钾处理使旗叶光合速率提高,功能期延长,使籽粒可溶性总糖含量和蔗糖含量高于不施钾的处理,促进了淀粉合成底物的供应,由此促进了淀粉的合成。盐胁迫下小麦抽穗期施钾,可促进小麦旗叶、籽粒的碳、氮代谢,淀粉合成速率加快。同时游离氨基酸含量增加,籽粒中蛋白质合成底物的供应增加,蛋白质产量提高。适宜的钾肥处理能够显著促进小麦植株碳、氮代谢过程,加速碳水化合物和蛋白质的合成,使籽粒蛋白质、淀粉产量提高。 4.4外源硝酸钾对盐胁迫下小麦花后旗叶抗衰老酶活性的影响 盐胁迫可使小麦代谢过程中产生的活性氧自由基增多,刺激酶促防御系统的保护酶(如,SOD、POD、CAT等)活性提高,但当盐浓度超过其上限时,酶活性达到一定的极限,活性氧自由基不能及时的清除,代谢发生紊乱,植株加速衰老或不能正常生长,出现“早死”现象。外源硝酸钾可有效缓解这一抑制作用,提高小麦在盐胁迫下的代谢能力,减少活性氧自由基的产生,减轻活性氧清除系统的压力,能较长时间维持叶片细胞结构的完整性,提高小麦抵抗盐胁迫的能力。 4.5 盐胁迫下小麦优质高产栽培技术规程 研究结果表明:选用高产优质抗盐小麦新品种,并合理配合施用钾肥是获得小麦优质高产的一项有效措施: 1) 选用高产优质抗盐小麦新品种 在品种选用上,首先要考虑苗期耐盐力好、个体分蘖强、成穗率高三大因素,在此基础上选择多穗、粒大、粒多的性状。 2)配合施用钾肥 钾肥基施和抽穗期叶面喷施皆对盐胁迫下小麦生长有促进作用。钾肥的施用量应根据土壤盐浓度而定,小麦生长环境中最佳的K+/Na+比值为16:100。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

植物根系大小和形态是决定植物吸氮能力的重要因素,而植物根系生长发育与土壤中营养元素的分布及其有效性密切相关,尤其是硝酸盐。然而目前关于硝酸盐调节植物根系生长的生理机制仍不清楚。一氧化氮(NO)是一种重要的气体信号分子,参与植物体内多种生理生化过程,包括调节根的生长发育。本研究以玉米自交系478为材料,采用营养液培养法,探讨了NO在硝酸盐调节玉米根系生长中的作用。主要结果和结论如下: 玉米幼苗在不同硝酸盐水平下生长7天后,主根伸长随着硝酸盐浓度的升高而下降;与0.01 mM硝酸盐处理下的玉米主根伸长相比,0.1 mM和1 mM硝酸盐处理对玉米主根伸长分别抑制了30%和36%。随着硝酸盐浓度的增加,玉米主根根尖过氧化氢(H2O2)含量表现出降低的趋势,而抗氧化酶,如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)的活性则表现出增加的趋势。外源供应过氧化氢对低浓度硝酸盐(0.01 mM)和高浓度硝酸盐(10 mM)处理下的玉米根伸长都没有影响,这表明了根尖过氧化氢含量的下降不是高浓度硝酸盐抑制玉米主根伸长的原因。 NO供体硝普钠(SNP)能够缓解高浓度硝酸盐对玉米主根伸长的抑制,而对低浓度硝酸盐处理下的主根伸长没有影响,而且NO清除剂亚甲基兰(MB)和NO合成酶抑制剂Nω-硝基-L-精氨酸(L-NNA)显著抑制了低浓度硝酸盐处理下的玉米主根伸长,而对高浓度硝酸盐处理下的玉米主根伸长没有影响。用NO特异性荧光染料4,5-二氨基乙酰乙酸荧光素(DAF-2DA)检测结果表明:高浓度硝酸盐显著降低玉米根尖NO含量。而玉米根中的硝酸还原酶活性随硝酸盐浓度的增加而增加。以上结果说明,高浓度硝酸盐抑制玉米主根伸长可能是与根尖NO合成酶的下调所导致的内源NO含量的降低有关。 另外,外源生长素(IAA)能缓解高浓度硝酸盐对玉米主根伸长的抑制,同时,也增加了高浓度硝酸盐处理下玉米根中内源NO含量,而对低浓度硝酸盐处理下的玉米根中内源NO没有影响。因此推测,根尖生长素的下降导致内源NO含量的降低可能是高浓度硝酸盐抑制玉米主根伸长的原因。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

磷缺乏已成为制约世界农业生产的重要因子。植物根系的大小和形态是决定植物吸收土壤磷能力的重要因素,而且根系的生长发育与磷素的分布及其有效性密切相关。关于磷酸盐调节植物根系生长研究已有很多报道,但其生理和分子机制仍不清楚。一氧化氮 (NO) 是一种重要的气体信号分子,参与调控植物的生长发育和对多种逆境胁迫的应答反应。本文选用拟南芥为实验材料,研究探讨了NO与缺磷诱导的拟南芥根系形态变化之间的关系,主要结果如下: 用正常磷水平 (1 mM) 和低磷水平 (1 µM) 处理拟南芥幼苗,发现低磷抑制主根伸长,刺激侧根发生。外源NO供体销普纳 (SNP) 也抑制主根、刺激侧根生长,与低磷诱导根系形态变化相似。NO清除剂c-PTIO和一氧化氮合成酶 (NOS)抑制剂L-NNA均可部分减缓由低磷引起的对主根生长的抑制和对侧根的刺激作用。暗示低磷诱导的拟南芥根系形态的变化可能与NO含量的降低有关。 利用NO荧光标记物DAF-FM和激光共聚焦显微成像技术,本研究发现缺磷6 h和24 h后根细胞内源NO含量显著增加,而且NOS 抑制剂能减少低磷诱导的根细胞NO含量的增加。与正常供磷处理相比,低磷处理6 h和24 h,拟南芥根中编码与NO合成相关的基因(AtNOA1)的表达量增加,缺磷24 h后根中NOS酶活性升高。为了明确低磷诱导的NO 增加是否与硝酸还原酶(NR)介导的NO合成有关,本论文进一步研究了低磷对拟南芥硝酸还原酶活性和编码NR基因 (AtNR1和AtNR2)表达的影响。研究发现低磷处理6 h和24 h后和AtNR1和AtNR2基因的表达均没有变化,且蛭石中生长的拟南芥缺磷1个月后NR活性也没有发生变化;拟南芥的NR双突变体nia1,nia2在低磷处理24 h后,其根中的内源NO含量表现出与野生型相同的增加。因此这些研究结果表明,缺磷后拟南芥根细胞NO的含量增加主要由于NOS的活性升高,而与NR介导的NO合成无关。 已有资料表明低磷诱导植物根细胞内源过氧化氢(H2O2)分布和含量的变化。本论文研究了低磷处理对用H2O2标记物CM-H2DCFDA标记不同磷处理下的拟南芥根中的H2O2。研究发现,缺磷6 h根中H2O2的分布无明显变化,缺磷24 h后H2O2呈斑块状分布,且多集中在根尖伸长区。缺磷24 h后,叶片中的抗氧化保护酶—超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性没有明显变化。说明缺磷24 h 后产生的H2O2没有引起氧化胁迫,而是作为一种信号分子,与NO相互作用共同介导低磷胁迫的应答反应。关于NO与H2O2在低磷诱导的根形态变化中的信号转导过程还有待进一步研究。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

植物抗病研究一直是科学领域的一个热点,它不仅能从形态结构到分子基础对植物抗病进行机理的阐释,而且能够直接应用于农业生产,提高农业产值。 玉米基因组中Hm基因是编码一种依赖NADPH的HC-toxin 还原酶。Hm基因的序列和玉米,矮牵牛及金鱼草中的二氢黄酮醇-4-还原酶(Dihydroflavonol -4- reductase,DFR)基因的序列具有较高的同源性;对水稻中Hm同源基因YK1的研究表明,过表达YK1后植物抗胁迫能力增强。本实验室从小麦中克隆得到了Hm同源基因WHM,由于在双子叶植物中不含有Hm的同源基因,为了检测WHM在双子叶植物中是否具有生物学功能,我们选取了烟草为模式植物进行了相关研究。 WHM基因cDNA全长1255bp,编码361个氨基酸,WHM基因序列与Hm基因序列具有78%的同源性。为分析此基因在双子叶植物中的功能,我们构建了WHM基因的pBI121植物表达载体,并通过农杆菌介导叶圆片法转化烟草,成功获得了转基因植株。同时我们还构建了WHM基因的原核表达载体并成功诱导了WHM蛋白的表达。对转基因烟草进行抗病与抗盐实验,实验结果表明,对烟草叶片接种烟草黑胫病菌后,转基因烟草的抗病能力显著性的高于对照烟草;烟草叶片接种黑胫病菌后,与对照烟草相比,转基因烟草积累了更多的H2O2,具有更高的POD活性。烟草种子在含不同浓度NaCl的培养基上萌发一定时间后,发现对照烟草的根长变化倍数高于转基因烟草的根长变化倍数,说明转基因烟草对NaCl浓度变化不敏感,尤其是在高浓度时,转基因烟草的生长状态明显好于对照烟草。我们还对IPTG诱导的WHM基因的原核表达载体表达的总蛋白进行了DFR活性的检测,结果表明WHM蛋白在总蛋白中能够竞争性的结合NADPH,但是由于蛋白没有进行纯化,其是否具有DFR的活性还不能确定。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

百合是重要的球根花卉,是世界五大切花之一。我国的百合野生资源丰富,但百合鲜切花生产与世界花卉大国相比仍然存在差距,优质的商品种球大量依靠进口,实现商品种球国产化能够促进百合鲜切花生产和农业经济发展。温度是影响百合生长发育最重要的因子之一,影响百合鳞茎发育,限制百合的分布区域。 百合鳞茎具有自然休眠的特性,低温处理是目前打破百合鳞茎休眠的最常用的方法。低温处理期间,鳞茎内发生复杂的反应,淀粉水解,鳞茎内的淀粉酶(α-淀粉酶和β-淀粉酶)活性增加,可溶性糖主要是蔗糖积累;可溶性蛋白质含量增加,游离氨基酸在鳞茎相对幼嫩的器官中集中;休眠解除期间脱落酸和玉米素核苷含量呈下降趋势,赤霉素含量呈上升趋势且活性增高,鳞茎各部位生长素都有上升,一些其他生长调节剂如Me-JA和多胺对解除百合鳞茎也有作用。低温处理期间,鳞茎内各种激素相互作用,共同调控鳞茎的休眠状态。利用低温处理打破百合鳞茎休眠的过程中,温度要求控制在稳定的范围内。利用冰箱低温处理打破百合鳞茎休眠的实验中,放入样品前冰箱内的温度在所设定温度±1℃范围内波动,且不同部位温度均匀;但冰箱内放入样品后,其内部不同部位的温度相差较大,表现为上部温度高,下部温度低,冰箱内部不同部位温度差异很大。 从百合资源在中国的分布看,华北地区的百合资源相对稀缺,温度是限制其生长的重要环境因子。新铁炮百合能够在炎热的华南地区露地栽培,将其在华北地区进行区域化露地栽培实验,对百合栽培应用推广,扩大栽培面积,降低运输成本,以及保证鲜切花质量有重要意义。通过气体交换测定的光合作用是对高温最敏感和综合的生理指标,可以在植物生长和生物量积累未发生明显变化之前揭示高温的影响。本研究通过人工气候箱,设定四个温度梯度:25℃,32℃,38℃,44℃,处理2h,通过测定新铁炮百合幼苗的光合特性研究其耐热程度、探讨可能的耐热机制。结果表明:净光合作用速率(Pn)在小于38℃时下降幅度不大,大于38℃后显著下降,随着处理温度的提高,气孔导度(Gs)呈下降的趋势,胞间二氧化碳浓度(Ci)则上升,而气孔限制值(Ls)下降。高温下,两品种叶片最小荧光(Fo)无明显变化,最大荧光(Fm)和光系统II(PSⅡ)最大光化学效率(Fv/Fm)下降程度较小;光下,PSⅡ实际光化学效率(ΦPSⅡ)呈下降趋势,44℃处理后显著下降;NPQ随处理温度的提高而上升;处理温度升高,SOD、APX、CAT、POD活力增强。研究表明新铁炮百合能够耐受32-38℃的高温;热胁迫下,叶片通过提高非光化猝灭和抗氧化酶活性两种机制来抵御高温胁迫。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

我国牡丹资源丰富、药用历史悠久、药材出口量大。近年来国际上对进口植物药的重金属限量标准不断提高,已成为影响丹皮出口的最大贸易壁垒之一,严重阻碍了丹皮产业化进程。为了提高我国丹皮药材整体质量水平和国际竞争力,本试验探讨了不同产地、不同种质资源的丹皮与Cu、Cd、Pb、As四种重金属的关系,重点研究了两个代表性品种对重金属Cu的富集规律,分析了重金属Cu对牡丹生长、生理和药材品质的影响。实验中采用火焰原子吸收分光光度法(FAAS )和电感耦合等离子体质谱法(ICP-MS)为基本检测手段来分析样品中重金属元素的含量,从植物与重金属相互关系的角度对牡丹药用、花药兼用以及生态修复可行性等方面进行了系统研究。结果如下: 1. 丹皮重金属含量与牡丹种质资源和栽培环境关系密切。野生种中滇牡丹丹皮中Cu、Cd含量相对较高,多数野生种丹皮中Pb、As含量较栽培种偏高;铜陵产区的丹皮重金属含量明显高于其它产区,铜尾矿上栽培出产的丹皮重金属Cu含量明显超标,建议其改变种植模式,可以考虑丰富牡丹品种,开发生态旅游、观赏栽培。 2. 综合比较同一地块的7个常用药用品种发现,‘JPH’和‘CKL’品种对重金属富集能力相对较弱。‘JPH’是传统的优良观赏品种,适宜花药兼用;结合前期研究的结果‘CKL’药效成分含量相对较高,药用价值较高,适宜药用栽培。 3. 对药用牡丹品种‘凤丹’和‘建始粉’外施不同浓度CuSO4溶液处理后发现,丹皮中重金属富集量与外施重金属浓度成显著正相关。当外施Cu 浓度超过150mg/kg 时,两个品种的丹皮中Cu含量均已超标。 4. 重金属Cu对牡丹生长的影响效应与重金属浓度和植物体自身部位有关。当外施Cu浓度小于600mg/kg 时,对牡丹生长有一定的促进作用,主要表现在地上部分;超过600mg/kg 时,对牡丹生长有抑制作用,随着浓度增大,毒害症状愈加明显。地下部主要表现出受抑制作用,抑制效应随外施浓度增大而加重。 5. 牡丹通过自身的生理生化调节机制抵抗Cu胁迫对细胞造成的氧化伤害:低浓度Cu可以刺激抗氧化酶系统SOD和POD 活性升高,高浓度下SOD和 POD活性则显著降低。相同处理条件下‘凤丹’品种的抗铜性要高于‘建始粉’。 6. 本试验未发现外施Cu处理对丹皮中药效成分丹皮酚、芍药苷产生影响。 7. ‘凤丹’及‘建始粉’根系铜富集质量分数均达到超富集植物的要求,因此牡丹可能在重金属Cu污染的环境修复方面存在巨大潜力。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用水族箱研究了在单一的铵氮和硝氮急性胁迫下,3d内菹草的现存量、生产力、叶绿素与可溶性蛋白质含量以及SOD和POD活性的变化特点。结果表明:铵氮胁迫下,菹草现存量增加百分比与铵氮浓度间显著负相关;铵氮>1.56mg/L时,菹草现存量、生产力、可溶性蛋白含量开始明显下降,生长受到抑制;叶绿素含量在胁迫6h时无明显变化,在高浓度的铵氮胁迫24和72h时,含量明显下降;随着胁迫时间延长,SOD活性明显升高时对应的胁迫浓度越来越低,而在高浓度的铵氮胁迫下,活性明显下降;POD活性随着胁迫浓度的提高,在6、24和

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用聚丙烯酰胺凝胶电泳的方法,研究了马来眼子菜(Potamogeton malaianus)和斜生栅藻(Scenedesmusobliquus)共培养系统中斜生栅藻的过氧化物酶(POD)、超歧化物氧化酶(SOD)、过氧化氢酶(CAT)、细胞色素氧化酶(COD)等同工酶的变化,探讨了沉水植物化感作用对藻类部分酶类的影响。与正常生长状态的对照组相比,马来眼子菜作用下的样品组斜生栅藻POD酶带总数保持稳定,但酶谱组成发生变化;样品组斜生栅藻SOD酶带数量减少而CAT酶带数量增加。综合结果表明,样品组藻体在化感作

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用2μg/mL微囊藻毒素-RR(MC-RR)、2μg/mL MC-RR+0.5%二甲基亚砜(DMSO)和2μg/mL MC-RR+2 mmol/L抗坏血酸(ASA)分别处理烟草悬浮细胞,研究上述各处理对烟草悬浮细胞活性氧(ROS)产生和抗氧化系统的影响。结果表明,与对照相比,MC-RR单独处理后烟草悬浮细胞中ROS、膜脂过氧化产物丙二醛(MDA)和细胞内源ASA的含量及超氧化物歧化酶(SOD)和过氧化物酶(POD)的活性明显升高,还原型谷胱甘肽(GSH)的含量有一个先降后升的变化过程。在分别加入外源抗氧

Relevância:

10.00% 10.00%

Publicador:

Resumo:

研究了在十二烷基苯磺酸钠(SDBS)和多聚磷酸钠(STPP)及其复合胁迫下,黑藻过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)活性变化及其耐受浓度.结果表明,POD活性随着处理浓度的增加而逐渐增大;CAT在低浓度胁迫时活性逐渐增加,在较高浓度胁迫时活性降低;实验初期(6h时),SOD活性逐渐升高,随着SDBS处理浓度的提高及时间延长,SOD活性下降,并且在8mg/L浓度处理72h,SOD失活.SDBS对黑藻SOD的抑制作用大于STPP.黑藻对SDBS的耐受浓度(8mg/L)明显小于S