778 resultados para Conformal Antenas
Resumo:
This paper provides an explicit cofibrant resolution of the operad encoding Batalin-Vilkovisky algebras. Thus it defines the notion of homotopy Batalin-Vilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defind by quadratic and linear relations. The operad encoding Batalin-Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a Poincare-Birkhoff-Witt Theorem for such an operad and to give an explicit small quasi-free resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra structure.
Resumo:
This study was to evaluate the treatment dosimetry, efficacy and toxicity of intensity modulated radiation therapy (IMRT) and fractionated stereotactic radiotherapy (FSRT) in the management of infratentorial ependymoma. Between 1999 and 2007, seven children (median age, 3.1 years) with infratentorial ependymoma were planned with either IMRT (3 patients) or SFRT (4 patients), the latter after conventional posterior fossa irradiation. Two children underwent gross total resection. Median prescribed dose was 59.4 Gy (range, 55.8-60). The median follow-up for surviving patients was 4.8 years (range, 1.3-8). IMRT (median dose, 59.4 Gy) and FSRT (median dose, 55.8 Gy) achieved similar optimal target coverage. Percentages of maximum doses delivered to the cochleae (59.5 vs 85.0% Gy; P = 0.05) were significantly inferior with IMRT, when compared to FSRT planning. Percentages of maximum doses administered to the pituitary gland (38.2 vs 20.1%; P = 0.05) and optic chiasm (38.1 vs 14.1%; P = 0.001) were, however, significantly higher with IMRT, when compared to FSRT planning. No recurrences were observed at the last follow-up. The estimated 3-year progression-free survival and overall survival were 87.5 and 100%, respectively. No grade >1 acute toxicity was observed. Two patients presented late adverse events (grade 2 hypoacousia) during follow-up, without cognitive impairment. IMRT or FSRT for infratentorial ependymomas is effective and associated with a tolerable toxicity level. Both treatment techniques were able to capitalize their intrinsic conformal ability to deliver high-dose radiation. Larger series of patients treated with these two modalities will be necessary to more fully evaluate these delivery techniques.
Resumo:
Background: Panitumumab (pmab), a fully human monoclonal antibody against the epidermal growth factor receptor (EGFR), is indicated as monotherapy for treatment of metastatic colorectal cancer. This ongoing study is designed to assess the efficacy and safety of pmab in combination with radiotherapy (PRT) compared to chemoradiotherapy (CRT) as initial treatment of unresected, locally advanced SCCHN (ClinicalTrials.gov Identifier: NCT00547157). Methods: This is a phase 2, open-label, randomized, multicenter study. Eligible patients (pts) were randomized 2:3 to receive cisplatin 100 mg/m2 on days 1 and 22 of RT or pmab 9.0 mg/kg on days 1, 22, and 43. Accelerated RT (70 to 72 Gy − delivered over 6 to 6.5 weeks) was planned for all pts and was delivered either by intensity-modulated radiation therapy (IMRT) modality or by three-dimensional conformal (3D-CRT) modality. The primary endpoint is local-regional control (LRC) rate at 2 years. Key secondary endpoints include PFS, OS, and safety. An external, independent data monitoring committee conducts planned safety and efficacy reviews during the course of the trial. Results: Pooled data from this planned interim safety analysis includes the first 52 of the 150 planned pts; 44 (84.6%) are male; median (range) age is 57 (33−77) years; ECOG PS 0: 65%, PS 1: 35%; 20 (39%) pts received IMRT, and 32 (61%) pts received 3D-CRT. Fifty (96%) pts completed RT, and 50 pts received RT per protocol without a major deviation. The median (range) total RT dose administered was 72 (64−74) Gy. The most common grade _ 3 adverse events graded using the CTCAE version 3.0 are shown (Table). Conclusions: After the interim safety analysis, CONCERT-2 continues per protocol. Study enrollment is estimated to be completed by October 2009.
Resumo:
In the last decades, new technologies have been introduced in the daily clinical practice of the radiation oncologist: 3D-Conformal radiotherapy (RT) became almost universally available, thereafter, intensity modulated RT (IMRT) gained large diffusion, due to its potential impact in improving the clinical outcomes, and more recently, helical and volumetric arc IMRT with image-guided RT are becoming more and more diffused and used for prostate cancer patients. The conventional dose-fractionation results to be the best compromise between the efficacy and the safety of the treatment, but combining new techniques, modern RT allows to overcame one of the major limits of the 'older' RT: the impossibility of delivering higher total doses and/or high dose/fraction. The evidences regarding radiobiology, clinical and technological evolution of RT in prostate cancer have been reported and discussed.
Resumo:
Purpose/Objective(s): Adenosquamous carcinoma (AC) of the head and neck is a distinct entity first described in 1968. Its natural history is more aggressive than squamous cell carcinoma but this is based on very small series reported in the literature. The goal of this study was to assess the clinical profile, outcome, patterns of failure and prognostic factors in patients with AC of the head and neck treated by radiation therapy (RT) with or without chemotherapy (CT).Materials/Methods: Data from 18 patients with Stage I (n = 3), II (n = 1), III (n = 4), or IVa (n = 10) AC, treated between 1989 and 2009, were collected in a retrospective multicenter Rare Cancer Network study. Median age was 60 years (range, 48 - 73 years). Fourteen patients were male and 4 female. Risk factors, including perineural invasion, lymphangitis, vascular invasion, positive margins, were present in 83% of the patients. Tumor sites included oral cavity in 4, oropharynx in 4, hypopharynx in2, larynx in 2, salivary glands in 2, nasal vestibule in 2, nasopharynx in 1, and maxillary sinus in 1 patient. Surgery (S) was performed in all but 5 patients. S alone was performed in only 1 patient, and definitive RT alone in 3 patients. Fourteen patients received combined modality treatment (S+RT in 10, RT+CT in 2, and all of the three modalities in 2 patients). Median RT dose to the primary and to the nodes was 66 Gy (range, 50 - 72 Gy) and 53 Gy (range, 44 - 66 Gy), respectively (1.8 - 2.0 Gy/fr., 5 fr./ week). In 4 patients, the planning treatment volume included the primary tumor site only. Seven patients were treated with 2D RT, 7 with 3D conformal RT, and 2 with intensity-modulated RT.Results: After a median follow-up period of 38 months (range, 9 - 62 months), 8 patients developed distant metastases (lung, bone, mediastinum, and liver), 6 presented nodal recurrences, and only 4 had a local relapse at the primary site (all in-field recurrences). At last follow-up, 6 patients were alive without disease, 1 alive with disease, 9 died from progressive disease, and 2 died from intercurrent disease. The 3-year and median overall survival, disease-free survival (DFS) and locoregional control rates were 52% (95% confidence interval [CI]: 28 - 76%) and 39 months, 36% (95% CI: 13 - 49%) and 12 months, and 54% (95% CI: 26 - 82%) and 40 months, respectively. In multivariate analysis (Cox model), DFS was negatively influenced by the presence of extracapsular extension (p = 0.02) and advanced stage (IV versus I-III, p = 0.003).Conclusions: Overall prognosis of locoregionally advanced AC remains poor, and distant metastases and nodal relapse occur in almost half of the cases. However, local control is relatively good, and early stage AC patients had prolonged DFS when treated with combined modality treatment.
Resumo:
PURPOSE: Chemotherapy (CT) combined with radiation therapy (RT) is the standard treatment for limited disease small-cell lung cancer (LDSCLC). Many questions including RT dose, fractionation, and sequence of RT/CT administration remain controversial. In this paper, we retrospectively assessed the outcome of patients with LDSCLC treated with radiation of at least 50 Gy.METHODS AND MATERIALS: From December 1997 to January 2006, 69 consecutive patients with LDSCLC were treated at our institutions. Treatment consisted of at least 4 cycles of CT, and 3D conformal thoracic RT. The median age was 61 years (range, 37-78 years). Sequential or concomitant CT/RT was given in 47 (68%) and 22 (32%) of the patients, respectively. The median RT dose was 60 Gy. Prophylactic cranial irradiation (PCI) was administered in 47 (68%) patients.RESULTS: With a median follow-up of 36 months (range, 6-107), 16 patients were alive without disease. The median overall survival time was 24 months, with a 3-year survival rate of 29%. The 3-year disease-free survival (DFS) and loco-regional control (LRC) rates were 23% and 60%, respectively. A better DFS was significantly associated with performance status (PS) 0 (p = 0.004), complete response to treatment (p = 0.03), and PCI group (p = 0.03). A trend towards improved overall survival (OS) was observed for patients who underwent PCI (p = 0.07). Patients treated with sequential CT/RT had a better outcome than those treated with concomitant treatment (3-year DFS rate 27% vs. 13%; p = 0.04). However, PCI was delivered more frequently for the sequential group. No significant dose-response relationship was found in terms of LRC. The multivariate analysis showed that complete response to treatment was the only significant factor for OS.CONCLUSION: Complete response to treatment was the most important factor for OS. A better DFS was significantly associated with the PCI group. We did not find a significant difference in outcome between patients receiving doses of 60 Gy or more and patients receiving 60 Gy or less.
Resumo:
We design optimal band pass filters for electrons in semiconductor heterostructures, under a uniform applied electric field. The inner cells are chosen to provide a desired transmission window. The outer cells are then designed to transform purely incoming or outgoing waves into Bloch states of the inner cells. The transfer matrix is interpreted as a conformal mapping in the complex plane, which allows us to write constraints on the outer cell parameters, from which physically useful values can be obtained.
Resumo:
The gauge-invariant actions for open and closed free bosonic string field theories are obtained from the string field equations in the conformal gauge using the cohomology operations of Banks and Peskin. For the closed-string theory no restrictions are imposed on the gauge parameters.
Resumo:
The Newton-Hooke algebras in d dimensions are constructed as contractions of dS(AdS) algebras. Nonrelativistic brane actions are WZ terms of these Newton-Hooke algebras. The NH algebras appear also as subalgebras of multitemporal relativistic conformal algebras, SO(d+1,p+2). We construct generalizations of pp-wave metrics from these algebras.
Resumo:
PURPOSE: We investigated the influence of beam modulation on treatment planning by comparing four available stereotactic radiosurgery (SRS) modalities: Gamma-Knife-Perfexion, Novalis-Tx Dynamic-Conformal-Arc (DCA) and Dynamic-Multileaf-Collimation-Intensity-Modulated-radiotherapy (DMLC-IMRT), and Cyberknife. MATERIAL AND METHODS: Patients with arteriovenous malformation (n = 10) or acoustic neuromas (n = 5) were planned with different treatment modalities. Paddick conformity index (CI), dose heterogeneity (DH), gradient index (GI) and beam-on time were used as dosimetric indices. RESULTS: Gamma-Knife-Perfexion can achieve high degree of conformity (CI = 0.77 ± 0.04) with limited low-doses (GI = 2.59 ± 0.10) surrounding the inhomogeneous dose distribution (D(H) = 0.84 ± 0.05) at the cost of treatment time (68.1 min ± 27.5). Novalis-Tx-DCA improved this inhomogeneity (D(H) = 0.30 ± 0.03) and treatment time (16.8 min ± 2.2) at the cost of conformity (CI = 0.66 ± 0.04) and Novalis-TX-DMLC-IMRT improved the DCA CI (CI = 0.68 ± 0.04) and inhomogeneity (D(H) = 0.18 ± 0.05) at the cost of low-doses (GI = 3.94 ± 0.92) and treatment time (21.7 min ± 3.4) (p<0.01). Cyberknife achieved comparable conformity (CI = 0.77 ± 0.06) at the cost of low-doses (GI = 3.48 ± 0.47) surrounding the homogeneous (D(H) = 0.22 ± 0.02) dose distribution and treatment time (28.4min±8.1) (p<0.01). CONCLUSIONS: Gamma-Knife-Perfexion will comply with all SRS constraints (high conformity while minimizing low-dose spread). Multiple focal entries (Gamma-Knife-Perfexion and Cyberknife) will achieve better conformity than High-Definition-MLC of Novalis-Tx at the cost of treatment time. Non-isocentric beams (Cyberknife) or IMRT-beams (Novalis-Tx-DMLC-IMRT) will spread more low-dose than multiple isocenters (Gamma-Knife-Perfexion) or dynamic arcs (Novalis-Tx-DCA). Inverse planning and modulated fluences (Novalis-Tx-DMLC-IMRT and CyberKnife) will deliver the most homogeneous treatment. Furthermore, Linac-based systems (Novalis and Cyberknife) can perform image verification at the time of treatment delivery.
Resumo:
We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of massless nonconformal matter fields in the early Universe. To this end, we supplement the stress-energy tensor of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so-called Einstein-Langevin equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the scale factor in a simple cosmological model introduced by Hartle, which consists of a spatially flat isotropic cosmology driven by radiation and dust.
Resumo:
The semiclassical Einstein-Langevin equations which describe the dynamics of stochastic perturbations of the metric induced by quantum stress-energy fluctuations of matter fields in a given state are considered on the background of the ground state of semiclassical gravity, namely, Minkowski spacetime and a scalar field in its vacuum state. The relevant equations are explicitly derived for massless and massive fields arbitrarily coupled to the curvature. In doing so, some semiclassical results, such as the expectation value of the stress-energy tensor to linear order in the metric perturbations and particle creation effects, are obtained. We then solve the equations and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. In the conformal field case, explicit results are obtained. These results hint that gravitational fluctuations in stochastic semiclassical gravity have a non-perturbative behavior in some characteristic correlation lengths.
Resumo:
Recent results in the literature concerning holography indicate that the thermodynamics of quantum gravity (at least with a negative cosmological constant) can be modeled by the large N thermodynamics of quantum field theory. We emphasize that this suggests a completely unitary evolution of processes in quantum gravity, including black hole formation and decay, and even more extreme examples involving topology change. As concrete examples which show that this correspondence holds even when the space-time is only locally asymptotically AdS, we compute the thermodynamical phase structure of the AdS-Taub-NUT and AdS-Taub-bolt spacetimes, and compare them to a (2+1)-dimensional conformal field theory (at large N) compactified on a squashed three-sphere and on the twisted plane.
Resumo:
(2+1)-dimensional anti-de Sitter (AdS) gravity is quantized in the presence of an external scalar field. We find that the coupling between the scalar field and gravity is equivalently described by a perturbed conformal field theory at the boundary of AdS3. This allows us to perform a microscopic computation of the transition rates between black hole states due to absorption and induced emission of the scalar field. Detailed thermodynamic balance then yields Hawking radiation as spontaneous emission, and we find agreement with the semiclassical result, including greybody factors. This result also has application to four and five-dimensional black holes in supergravity.
Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis.
Resumo:
In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chaperones and folding enzymes, termed here "the chaperome," which can prevent formation of potentially harmful misfolded protein conformers and use the energy of adenosine triphosphate (ATP) to rehabilitate already formed toxic aggregates into native functional proteins. In an attempt to extend knowledge of chaperome mechanisms in cellular proteostasis, we performed a meta-analysis of human chaperome using high-throughput proteomic data from 11 immortalized human cell lines. Chaperome polypeptides were about 10 % of total protein mass of human cells, half of which were Hsp90s and Hsp70s. Knowledge of cellular concentrations and ratios among chaperome polypeptides provided a novel basis to understand mechanisms by which the Hsp60, Hsp70, Hsp90, and small heat shock proteins (HSPs), in collaboration with cochaperones and folding enzymes, assist de novo protein folding, import polypeptides into organelles, unfold stress-destabilized toxic conformers, and control the conformal activity of native proteins in the crowded environment of the cell. Proteomic data also provided means to distinguish between stable components of chaperone core machineries and dynamic regulatory cochaperones.