866 resultados para Computer Vision and Pattern Recognition
Resumo:
La tesis se centra en la Visión por Computador y, más concretamente, en la segmentación de imágenes, la cual es una de las etapas básicas en el análisis de imágenes y consiste en la división de la imagen en un conjunto de regiones visualmente distintas y uniformes considerando su intensidad, color o textura. Se propone una estrategia basada en el uso complementario de la información de región y de frontera durante el proceso de segmentación, integración que permite paliar algunos de los problemas básicos de la segmentación tradicional. La información de frontera permite inicialmente identificar el número de regiones presentes en la imagen y colocar en el interior de cada una de ellas una semilla, con el objetivo de modelar estadísticamente las características de las regiones y definir de esta forma la información de región. Esta información, conjuntamente con la información de frontera, es utilizada en la definición de una función de energía que expresa las propiedades requeridas a la segmentación deseada: uniformidad en el interior de las regiones y contraste con las regiones vecinas en los límites. Un conjunto de regiones activas inician entonces su crecimiento, compitiendo por los píxeles de la imagen, con el objetivo de optimizar la función de energía o, en otras palabras, encontrar la segmentación que mejor se adecua a los requerimientos exprsados en dicha función. Finalmente, todo esta proceso ha sido considerado en una estructura piramidal, lo que nos permite refinar progresivamente el resultado de la segmentación y mejorar su coste computacional. La estrategia ha sido extendida al problema de segmentación de texturas, lo que implica algunas consideraciones básicas como el modelaje de las regiones a partir de un conjunto de características de textura y la extracción de la información de frontera cuando la textura es presente en la imagen. Finalmente, se ha llevado a cabo la extensión a la segmentación de imágenes teniendo en cuenta las propiedades de color y textura. En este sentido, el uso conjunto de técnicas no-paramétricas de estimación de la función de densidad para la descripción del color, y de características textuales basadas en la matriz de co-ocurrencia, ha sido propuesto para modelar adecuadamente y de forma completa las regiones de la imagen. La propuesta ha sido evaluada de forma objetiva y comparada con distintas técnicas de integración utilizando imágenes sintéticas. Además, se han incluido experimentos con imágenes reales con resultados muy positivos.
Resumo:
The synthesis of a range of ditopic polyferrocenyl zinc(II) dithiocarbamate macrocyclic receptors containing ferrocene groups on the macrocycle's periphery and/or as part of the cyclic cavity is reported. The assemblies have been characterised by a range of spectroscopic techniques, electrochemical studies and in two cases by X-ray structure determination. The ability of these host systems to bind and sense electrochemically anionic guest species, isonicotinate and benzoate, and neutral 4-picoline guest was examined by H-1 NMR and cyclic voltammetric titration studies. The strongest association was found between the isonicotinate anion and a dinuclear zinc(II) receptor whose macrocyclic cavity is of complementary size to complex this bidentate guest species in a cooperative manner. Cyclic voltammetric studies demonstrated that all receptors can electrochemically sense the binding of isonicotinate and benzoate via significant cathodic perturbations of the respective ferrocene redox couple.
Resumo:
Acute doses of Ginkgo biloba have been shown to improve attention and memory in young, healthy participants, but there has been a lack of investigation into possible effects on executive function. In addition, only one study has investigated the effects of chronic treatment in young volunteers. This study was conducted to compare the effects of ginkgo after acute and chronic treatment on tests of attention, memory and executive function in healthy university students. Using a placebo-controlled double-blind design, in experiment 1, 52 students were randomly allocated to receive a single dose of ginkgo (120 mg, n=26) or placebo (n=26), and were tested 4h later. In experiment 2, 40 students were randomly allocated to receive ginkgo (120 mg/day; n=20) or placebo (n=20) for a 6-week period and were tested at baseline and after 6 weeks of treatment. In both experiments, participants underwent tests of sustained attention, episodic and working memory, mental flexibility and planning, and completed mood rating scales. The acute dose of ginkgo significantly improved performance on the sustained-attention task and pattern-recognition memory task; however, there were no effects on working memory, planning, mental flexibility or mood. After 6 weeks of treatment, there were no significant effects of ginkgo on mood or any of the cognitive tests. In line with the literature, after acute administration ginkgo improved performance in tests of attention and memory. However, there were no effects after 6 weeks, suggesting that tolerance develops to the effects in young, healthy participants.
Resumo:
Recognition as a cue to judgment in a novel, multi-option domain (the Sunday Times Rich List) is explored. As in previous studies, participants were found to make use of name recognition as a cue to the presumed wealth of individuals. Names that were recognized were judged to be the richest name from amongst the set presented at above chance levels. This effect persisted across situations in which more than one name was recognized; recognition was used as an inclusion criterion for the sub-set of names to be considered the richest of the set presented. However, when the question was reversed, and a “poorest” judgment was required, use of recognition as an exclusion criterion was observed only when a single name was recognized. Reaction times when making these judgments also show a distinction between “richest” and “poorest” questions with recognition of none of the options taking the longest time to judge in the “richest” question condition and full recognition of all the names presented taking longest to judge in the “poorest” question condition. Implications for decision-making using simple heuristics are discussed.
Resumo:
Information systems for business are frequently heavily reliant on software. Two important feedback-related effects of embedding software in a business process are identified. First, the system dynamics of the software maintenance process can become complex, particularly in the number and scope of the feedback loops. Secondly, responsiveness to feedback can have a big effect on the evolvability of the information system. Ways have been explored to provide an effective mechanism for improving the quality of feedback between stakeholders during software maintenance. Understanding can be improved by using representations of information systems that are both service-based and architectural in scope. The conflicting forces that encourage change or stability can be resolved using patterns and pattern languages. A morphology of information systems pattern languages has been described to facilitate the identification and reuse of patterns and pattern languages. The kind of planning process needed to achieve consensus on a system's evolution is also considered.
Resumo:
An important goal in computational neuroanatomy is the complete and accurate simulation of neuronal morphology. We are developing computational tools to model three-dimensional dendritic structures based on sets of stochastic rules. This paper reports an extensive, quantitative anatomical characterization of simulated motoneurons and Purkinje cells. We used several local and global algorithms implemented in the L-Neuron and ArborVitae programs to generate sets of virtual neurons. Parameters statistics for all algorithms were measured from experimental data, thus providing a compact and consistent description of these morphological classes. We compared the emergent anatomical features of each group of virtual neurons with those of the experimental database in order to gain insights on the plausibility of the model assumptions, potential improvements to the algorithms, and non-trivial relations among morphological parameters. Algorithms mainly based on local constraints (e.g., branch diameter) were successful in reproducing many morphological properties of both motoneurons and Purkinje cells (e.g. total length, asymmetry, number of bifurcations). The addition of global constraints (e.g., trophic factors) improved the angle-dependent emergent characteristics (average Euclidean distance from the soma to the dendritic terminations, dendritic spread). Virtual neurons systematically displayed greater anatomical variability than real cells, suggesting the need for additional constraints in the models. For several emergent anatomical properties, a specific algorithm reproduced the experimental statistics better than the others did. However, relative performances were often reversed for different anatomical properties and/or morphological classes. Thus, combining the strengths of alternative generative models could lead to comprehensive algorithms for the complete and accurate simulation of dendritic morphology.
Resumo:
A number of new and newly improved methods for predicting protein structure developed by the Jones–University College London group were used to make predictions for the CASP6 experiment. Structures were predicted with a combination of fold recognition methods (mGenTHREADER, nFOLD, and THREADER) and a substantially enhanced version of FRAGFOLD, our fragment assembly method. Attempts at automatic domain parsing were made using DomPred and DomSSEA, which are based on a secondary structure parsing algorithm and additionally for DomPred, a simple local sequence alignment scoring function. Disorder prediction was carried out using a new SVM-based version of DISOPRED. Attempts were also made at domain docking and “microdomain” folding in order to build complete chain models for some targets.
Resumo:
Empathy is the lens through which we view others' emotion expressions, and respond to them. In this study, empathy and facial emotion recognition were investigated in adults with autism spectrum conditions (ASC; N=314), parents of a child with ASC (N=297) and IQ-matched controls (N=184). Participants completed a self-report measure of empathy (the Empathy Quotient [EQ]) and a modified version of the Karolinska Directed Emotional Faces Task (KDEF) using an online test interface. Results showed that mean scores on the EQ were significantly lower in fathers (p<0.05) but not mothers (p>0.05) of children with ASC compared to controls, whilst both males and females with ASC obtained significantly lower EQ scores (p<0.001) than controls. On the KDEF, statistical analyses revealed poorer overall performance by adults with ASC (p<0.001) compared to the control group. When the 6 distinct basic emotions were analysed separately, the ASC group showed impaired performance across five out of six expressions (happy, sad, angry, afraid and disgusted). Parents of a child with ASC were not significantly worse than controls at recognising any of the basic emotions, after controlling for age and non-verbal IQ (all p>0.05). Finally, results indicated significant differences between males and females with ASC for emotion recognition performance (p<0.05) but not for self-reported empathy (p>0.05). These findings suggest that self-reported empathy deficits in fathers of autistic probands are part of the 'broader autism phenotype'. This study also reports new findings of sex differences amongst people with ASC in emotion recognition, as well as replicating previous work demonstrating empathy difficulties in adults with ASC. The use of empathy measures as quantitative endophenotypes for ASC is discussed.
Resumo:
Background. Current models of concomitant, intermittent strabismus, heterophoria, convergence and accommodation anomalies are either theoretically complex or incomplete. We propose an alternative and more practical way to conceptualize clinical patterns. Methods. In each of three hypothetical scenarios (normal; high AC/A and low CA/C ratios; low AC/A and high CA/C ratios) there can be a disparity-biased or blur-biased “style”, despite identical ratios. We calculated a disparity bias index (DBI) to reflect these biases. We suggest how clinical patterns fit these scenarios and provide early objective data from small illustrative clinical groups. Results. Normal adults and children showed disparity bias (adult DBI 0.43 (95%CI 0.50-0.36), child DBI 0.20 (95%CI 0.31-0.07) (p=0.001). Accommodative esotropes showed less disparity-bias (DBI 0.03). In the high AC/A and low CA/C scenario, early presbyopes had mean DBI of 0.17 (95%CI 0.28-0.06), compared to DBI of -0.31 in convergence excess esotropes. In the low AC/A and high CA/C scenario near exotropes had mean DBI of 0.27, while we predict that non-strabismic, non-amblyopic hyperopes with good vision without spectacles will show lower DBIs. Disparity bias ranged between 1.25 and -1.67. Conclusions. Establishing disparity or blur bias, together with knowing whether convergence to target demand exceeds accommodation or vice versa explains clinical patterns more effectively than AC/A and CA/C ratios alone. Excessive bias or inflexibility in near-cue use increases risk of clinical problems. We suggest clinicians look carefully at details of accommodation and convergence changes induced by lenses, dissociation and prisms and use these to plan treatment in relation to the model.
Resumo:
Genetic modification of shoot and root morphology has potential to improve water and nutrient 19 uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering 20 inhibition (tin) gene and representing multiple genetic backgrounds were investigated in contrasting 21 controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar 22 until tillering whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in 23 total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 24 145%. Together, root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot 25 and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected 26 NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed 27 greater root-to-shoot ratios with regular tiller removal in non-tin containing genotypes. In validating 28 these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but 29 was associated with significantly (P<0.05) reduced tiller number (-37%), leaf area index (-26%) and 30 spike number (-35%) to reduce plant biomass (-19%) at anthesis. Root biomass, root-to-shoot ratio at 31 early stem elongation and root depth at maturity were increased in tin-containing NILs. Soil water use 32 was slowed in tin-containing NILs resulting in greater water availability, greater stomatal 33 conductance, cooler canopy temperatures and maintenance of green leaf area during grain-filling. 34 Together these effects contributed to increases in harvest index and grain yield. In both the controlled 35 and field environments, the tin gene was commonly associated with increased root length and biomass 36 but the significant influence of genetic background and environment suggests careful assessment of 37 tin-containing progeny in selection for genotypic increases in root growth.
Resumo:
Predictive performance evaluation is a fundamental issue in design, development, and deployment of classification systems. As predictive performance evaluation is a multidimensional problem, single scalar summaries such as error rate, although quite convenient due to its simplicity, can seldom evaluate all the aspects that a complete and reliable evaluation must consider. Due to this, various graphical performance evaluation methods are increasingly drawing the attention of machine learning, data mining, and pattern recognition communities. The main advantage of these types of methods resides in their ability to depict the trade-offs between evaluation aspects in a multidimensional space rather than reducing these aspects to an arbitrarily chosen (and often biased) single scalar measure. Furthermore, to appropriately select a suitable graphical method for a given task, it is crucial to identify its strengths and weaknesses. This paper surveys various graphical methods often used for predictive performance evaluation. By presenting these methods in the same framework, we hope this paper may shed some light on deciding which methods are more suitable to use in different situations.