973 resultados para Computational biology
Resumo:
For various reasons, it is important, if not essential, to integrate the computations and code used in data analyses, methodological descriptions, simulations, etc. with the documents that describe and rely on them. This integration allows readers to both verify and adapt the statements in the documents. Authors can easily reproduce them in the future, and they can present the document's contents in a different medium, e.g. with interactive controls. This paper describes a software framework for authoring and distributing these integrated, dynamic documents that contain text, code, data, and any auxiliary content needed to recreate the computations. The documents are dynamic in that the contents, including figures, tables, etc., can be recalculated each time a view of the document is generated. Our model treats a dynamic document as a master or ``source'' document from which one can generate different views in the form of traditional, derived documents for different audiences. We introduce the concept of a compendium as both a container for the different elements that make up the document and its computations (i.e. text, code, data, ...), and as a means for distributing, managing and updating the collection. The step from disseminating analyses via a compendium to reproducible research is a small one. By reproducible research, we mean research papers with accompanying software tools that allow the reader to directly reproduce the results and employ the methods that are presented in the research paper. Some of the issues involved in paradigms for the production, distribution and use of such reproducible research are discussed.
Resumo:
While scientific research and the methodologies involved have gone through substantial technological evolution the technology involved in the publication of the results of these endeavors has remained relatively stagnant. Publication is largely done in the same manner today as it was fifty years ago. Many journals have adopted electronic formats, however, their orientation and style is little different from a printed document. The documents tend to be static and take little advantage of computational resources that might be available. Recent work, Gentleman and Temple Lang (2004), suggests a methodology and basic infrastructure that can be used to publish documents in a substantially different way. Their approach is suitable for the publication of papers whose message relies on computation. Stated quite simply, Gentleman and Temple Lang propose a paradigm where documents are mixtures of code and text. Such documents may be self-contained or they may be a component of a compendium which provides the infrastructure needed to provide access to data and supporting software. These documents, or compendiums, can be processed in a number of different ways. One transformation will be to replace the code with its output -- thereby providing the familiar, but limited, static document. In this paper we apply these concepts to a seminal paper in bioinformatics, namely The Molecular Classification of Cancer, Golub et al. (1999). The authors of that paper have generously provided data and other information that have allowed us to largely reproduce their results. Rather than reproduce this paper exactly we demonstrate that such a reproduction is possible and instead concentrate on demonstrating the usefulness of the compendium concept itself.
Resumo:
The advances in computational biology have made simultaneous monitoring of thousands of features possible. The high throughput technologies not only bring about a much richer information context in which to study various aspects of gene functions but they also present challenge of analyzing data with large number of covariates and few samples. As an integral part of machine learning, classification of samples into two or more categories is almost always of interest to scientists. In this paper, we address the question of classification in this setting by extending partial least squares (PLS), a popular dimension reduction tool in chemometrics, in the context of generalized linear regression based on a previous approach, Iteratively ReWeighted Partial Least Squares, i.e. IRWPLS (Marx, 1996). We compare our results with two-stage PLS (Nguyen and Rocke, 2002A; Nguyen and Rocke, 2002B) and other classifiers. We show that by phrasing the problem in a generalized linear model setting and by applying bias correction to the likelihood to avoid (quasi)separation, we often get lower classification error rates.
Resumo:
A basic, yet challenging task in the analysis of microarray gene expression data is the identification of changes in gene expression that are associated with particular biological conditions. We discuss different approaches to this task and illustrate how they can be applied using software from the Bioconductor Project. A central problem is the high dimensionality of gene expression space, which prohibits a comprehensive statistical analysis without focusing on particular aspects of the joint distribution of the genes expression levels. Possible strategies are to do univariate gene-by-gene analysis, and to perform data-driven nonspecific filtering of genes before the actual statistical analysis. However, more focused strategies that make use of biologically relevant knowledge are more likely to increase our understanding of the data.
Resumo:
An optimal multiple testing procedure is identified for linear hypotheses under the general linear model, maximizing the expected number of false null hypotheses rejected at any significance level. The optimal procedure depends on the unknown data-generating distribution, but can be consistently estimated. Drawing information together across many hypotheses, the estimated optimal procedure provides an empirical alternative hypothesis by adapting to underlying patterns of departure from the null. Proposed multiple testing procedures based on the empirical alternative are evaluated through simulations and an application to gene expression microarray data. Compared to a standard multiple testing procedure, it is not unusual for use of an empirical alternative hypothesis to increase by 50% or more the number of true positives identified at a given significance level.