Multiple Testing With an Empirical Alternative Hypothesis


Autoria(s): Signorovitch, James E
Data(s)

07/11/2006

Resumo

An optimal multiple testing procedure is identified for linear hypotheses under the general linear model, maximizing the expected number of false null hypotheses rejected at any significance level. The optimal procedure depends on the unknown data-generating distribution, but can be consistently estimated. Drawing information together across many hypotheses, the estimated optimal procedure provides an empirical alternative hypothesis by adapting to underlying patterns of departure from the null. Proposed multiple testing procedures based on the empirical alternative are evaluated through simulations and an application to gene expression microarray data. Compared to a standard multiple testing procedure, it is not unusual for use of an empirical alternative hypothesis to increase by 50% or more the number of true positives identified at a given significance level.

Formato

application/pdf

Identificador

http://biostats.bepress.com/harvardbiostat/paper60

http://biostats.bepress.com/cgi/viewcontent.cgi?article=1066&context=harvardbiostat

Publicador

Collection of Biostatistics Research Archive

Fonte

Harvard University Biostatistics Working Paper Series

Palavras-Chave #Empirical Bayes; False discovery rate; Clustering; Density estimation #Bioinformatics #Computational Biology #Microarrays #Statistical Methodology #Statistical Theory
Tipo

text