Multiple Testing With an Empirical Alternative Hypothesis
Data(s) |
07/11/2006
|
---|---|
Resumo |
An optimal multiple testing procedure is identified for linear hypotheses under the general linear model, maximizing the expected number of false null hypotheses rejected at any significance level. The optimal procedure depends on the unknown data-generating distribution, but can be consistently estimated. Drawing information together across many hypotheses, the estimated optimal procedure provides an empirical alternative hypothesis by adapting to underlying patterns of departure from the null. Proposed multiple testing procedures based on the empirical alternative are evaluated through simulations and an application to gene expression microarray data. Compared to a standard multiple testing procedure, it is not unusual for use of an empirical alternative hypothesis to increase by 50% or more the number of true positives identified at a given significance level. |
Formato |
application/pdf |
Identificador |
http://biostats.bepress.com/harvardbiostat/paper60 http://biostats.bepress.com/cgi/viewcontent.cgi?article=1066&context=harvardbiostat |
Publicador |
Collection of Biostatistics Research Archive |
Fonte |
Harvard University Biostatistics Working Paper Series |
Palavras-Chave | #Empirical Bayes; False discovery rate; Clustering; Density estimation #Bioinformatics #Computational Biology #Microarrays #Statistical Methodology #Statistical Theory |
Tipo |
text |