937 resultados para Classification time


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 45K05, 60J60, 60G50, 65N06, 80-99.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 45K05, 35A05, 35S10, 35S15, 33E12

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DBpedia has become one of the major sources of structured knowledge extracted from Wikipedia. Such structures gradually re-shape the representation of Topics as new events relevant to such topics emerge. Such changes make evident the continuous evolution of topic representations and introduce new challenges to supervised topic classification tasks, since labelled data can rapidly become outdated. Here we analyse topic changes in DBpedia and propose the use of semantic features as a more stable representation of a topic. Our experiments show promising results in understanding how the relevance of features to a topic changes over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33, 33E12, 33C60, 44A10, 45K05, 74D05,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification 2010: 26A33, 33E12, 35S10, 45K05.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social media has become an effective channel for communicating both trends and public opinion on current events. However the automatic topic classification of social media content pose various challenges. Topic classification is a common technique used for automatically capturing themes that emerge from social media streams. However, such techniques are sensitive to the evolution of topics when new event-dependent vocabularies start to emerge (e.g., Crimea becoming relevant to War Conflict during the Ukraine crisis in 2014). Therefore, traditional supervised classification methods which rely on labelled data could rapidly become outdated. In this paper we propose a novel transfer learning approach to address the classification task of new data when the only available labelled data belong to a previous epoch. This approach relies on the incorporation of knowledge from DBpedia graphs. Our findings show promising results in understanding how features age, and how semantic features can support the evolution of topic classifiers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J60, 62M99.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Йордан Йорданов, Андрей Василев - В работата се изследват методи за решаването на задачи на оптималното управление в дискретно време с безкраен хоризонт и явни управления. Дадена е обосновка на една процедура за решаване на такива задачи, базирана на множители на Лагранж, коята често се употребява в икономическата литература. Извеждени са необходимите условия за оптималност на базата на уравнения на Белман и са приведени достатъчни условия за оптималност при допускания, които често се използват в икономиката.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): G.2.2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time systems are usually modelled with timed automata and real-time requirements relating to the state durations of the system are often specifiable using Linear Duration Invariants, which is a decidable subclass of Duration Calculus formulas. Various algorithms have been developed to check timed automata or real-time automata for linear duration invariants, but each needs complicated preprocessing and exponential calculation. To the best of our knowledge, these algorithms have not been implemented. In this paper, we present an approximate model checking technique based on a genetic algorithm to check real-time automata for linear durration invariants in reasonable times. Genetic algorithm is a good optimization method when a problem needs massive computation and it works particularly well in our case because the fitness function which is derived from the linear duration invariant is linear. ACM Computing Classification System (1998): D.2.4, C.3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMS subject classification: 90B60, 90B50, 90A80.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMS subject classification: Primary 34A60, Secondary 49J52.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we use the quantum Jensen-Shannon divergence as a means to establish the similarity between a pair of graphs and to develop a novel graph kernel. In quantum theory, the quantum Jensen-Shannon divergence is defined as a distance measure between quantum states. In order to compute the quantum Jensen-Shannon divergence between a pair of graphs, we first need to associate a density operator with each of them. Hence, we decide to simulate the evolution of a continuous-time quantum walk on each graph and we propose a way to associate a suitable quantum state with it. With the density operator of this quantum state to hand, the graph kernel is defined as a function of the quantum Jensen-Shannon divergence between the graph density operators. We evaluate the performance of our kernel on several standard graph datasets from bioinformatics. We use the Principle Component Analysis (PCA) on the kernel matrix to embed the graphs into a feature space for classification. The experimental results demonstrate the effectiveness of the proposed approach. © 2013 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 62M20, 62-07, 62J05, 62P20.