1000 resultados para Cibicidoides kullenbergi, d13C


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Earth's climate underwent a fundamental change between 1250 and 700 thousand years ago, the Mid-Pleistocene Transition (MPT), when the dominant periodicity of climate cycles changed from 41,000 to 100,000 years in the absence of significant change in orbital forcing. Over this time, an increase occurred in the amplitude of change of deep ocean foraminiferal oxygen isotopic ratios, traditionally interpreted as defining the main rhythm of ice ages although containing large effects of changes in deep-ocean temperature. We have separated the effects of decreasing temperature and increasing global ice volume on oxygen isotope ratios. Our results suggest that the MPT was initiated by an abrupt increase in Antarctic ice volume at 900 ka. We see no evidence of a pattern of gradual cooling but near-freezing temperatures occur at every glacial maximum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The IMAGES core MD99-2343, recovered from a sediment drift north of the island of Minorca, in the north-western Mediterranean Sea, holds a high-resolution sequence that is perfectly suited to study the oscillations of the overturning system of the Western Mediterranean Deep Water (WMDW). Detailed analysis of grain-size and bulk geochemical composition reveals the sensitivity of this region to climate changes at both orbital and centennial-millennial temporal scales during the last 50 kyr. The dominant orbital pattern in the K/Al record indicates that sediment supply to the basin was controlled by the insolation evolution at 40°N, which forced changes in the fluvial regime, with more efficient sediment transport during insolation maxima. This orbital control also modulated the long-term pattern of the WMDW intensity as illustrated by the silt/clay ratio. However, deep convection was particularly sensitive to climatic changes at shorter time-scales, i.e. to centennial-millennial glacial and Holocene oscillations that are well documented by all the paleocurrent intensity proxies (Si/Al, Ti/Al and silt/clay ratios). Benthic isotopic records (d13C and d18O) show a Dansgaard-Oeschger (D-O) pattern of variability of WMDW properties, which can be associated with changing intensities of the deep currents system. The most prominent reduction on the WMDW overturning was caused by the post-glacial sea level rise. Three main scenarios of WMDW overturning are revealed: a strong mode during D-O Stadials, a weak mode during D-O Interstadials and an intermediate mode during cooling transitions. In addition, D-O Stadials associated with Heinrich events (HEs) have a very distinct signature as the strong mode of circulation, typical for the other D-O Stadials, was never reached during HE due to the surface freshening induced by the inflowing polar waters. Consequently, the WMDW overturning system oscillated around the intermediate mode of circulation during HE. Though surface conditions were more stable during the Holocene, the WMDW overturning cell still reacted synchronously to short-lived events, as shown by increments in the planktonic d18O record, triggering quick reinforcements of the deep water circulation. Overall, these results highlight the sensitivity of the WMDW to rapid climate change which in the recent past were likely induced by oceanographic and atmospheric reorganizations in the North Atlantic region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present here oxygen and carbon isotopic records of Eocene to Oligocene benthic foraminifera from two Bay of Biscay Deep Sea Drilling Project (DSDP) sites (119 and 401). d18O of benthic foraminifera increases 1.9 per mil from a middle Eocene minimum (Zones P10-P11) to an earliest Oligocene maximum (Zone NP21). Approximately 1.4 per mil of the increase in benthic foraminiferal d18O occurs during the late Eocene to earliest Oligocene (Zones P15/16-NP21). Previous results from other North Atlantic DSDP sites (400A and 398) have significantly lower d18O values of benthic foraminifera, some by as much as 2 per mil (Vergnaud-Grazzini et al., 1978; 1989, doi:10.2973/dsdp.proc.48.119.1979; Vergnaud-Grazzini, 1979, doi:10.2973/dsdp.proc.47-2.117.1979 ). We believe that these differences result from diagenetic alteration of the sediments in the deeper-buried Sites 400A and 398.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern-Hemisphere Glaciation (NHG) and of pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic and continue until today (Zachos et al., 2001, doi:10.1126/science.1059412). The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3) and 2.7 Ma (glacial MIS G6/4) (Lisiecki and Raymo, 2005, doi:10.1029/2004PA001071). Various models (sensu Driscoll and Haug, 1998, doi:10.1126/science.282.5388.436) and paleoceanographic records (intercalibrated using orbital age control) suggest clear linkages between the onset of NHG and the three steps in the final closure of the Central American Seaways (CAS), deduced from rising salinity differences between Caribbean and the East Pacific. Each closing event led to an enhanced North Atlantic meridional overturning circulation and this strengthened the poleward transport of salt and heat (warmings of +2-3°C) (Bartoli et al., 2005, doi:10.1016/j.epsl.2005.06.020). Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia (Lunt et al., 2007, doi:10.1007/s00382-007-0265-6), which probably led to an enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS), and an increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, new evidence shows that the closing of the CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC). Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~2 psu from 3.25/3.16-3.00 Ma, right after the first but still reversible attempt of closing the CAS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantitative coccolithophore analyses were performed in core MD01-2446, located in the mid-latitude North Atlantic, to reconstruct climatically induced sea-surface water conditions throughout Marine Isotope Stages (MIS) 14-9. The data are compared to new and available paleoenvironmental proxies from the same site as well as other nearby North Atlantic records that support the coccolithophore signature at glacial-interglacial to millennial climate scale. Total coccolithophore absolute abundance increases during interglacials but abruptly drops during the colder glacial phases and deglaciations. Coccolithophore warm-water taxa (wwt) indicate that MIS11c and MIS9e experienced warmer and more stable conditions throughout the whole photic zone compared to MIS13. MIS11 was a long-lasting warmer and stable interglacial characterized by a climate optimum during MIS11c when a more prominent influence of the subtropical front at the site is inferred. The wwt pattern also suggests distinct interstadial and stadial events lasting about 4-10 kyr. The glacial increases of Gephyrocapsa margereli-G. muellerae 3-4 µm along with higher values of Corg, additionally supported by the total alkenone abundance at Site U1313, indicate more productive surface waters, likely reflecting the migration of the polar front into the mid-latitude North Atlantic. Distinctive peaks of G. margereli-muellerae (> 4 µm), C. pelagicus pelagicus, Neogloboquadrina pachyderma left coiling, and reworked nannofossils, combined with minima in total nannofossil accumulation rate, are tracers of Heinrich-type events during MIS12 and MIS10. Additional Heinrich-type events are suggested during MIS12 and MIS14 based on biotic proxies, and we discuss possible iceberg sources at these times. Our results improve the understanding of mid-Brunhes paleoclimate and the impact on phytoplankton diversity in the mid-latitude North Atlantic region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface and deepwater paleoclimate records in Irminger Sea core SO82-5 (59°N, 31°W) and Icelandic Sea core PS2644 (68°N, 22°W) exhibit large fluctuations in thermohaline circulation (THC) from 60 to 18 calendar kyr B.P., with a dominant periodicity of 1460 years from 46 to 22 calendar kyr B.P., matching the Dansgaard-Oeschger (D-O) cycles in the Greenland Ice Sheet Project 2 (GISP2) temperature record [Grootes and Stuiver, 1997, doi:10.1029/97JC00880]. During interstadials, summer sea surface temperatures (SSTsu) in the Irminger Sea averaged to 8°C, and sea surface salinities (SSS) averaged to ~36.5, recording a strong Irminger Current and Atlantic THC. During stadials, SSTsu dropped to 2°-4°C, in phase with SSS drops by ~1-2. They reveal major meltwater injections along with the East Greenland Current, which turned off the North Atlantic deepwater convection and hence the heat advection to the north, in harmony with various ocean circulation and ice models. On the basis of the IRD composition, icebergs came from Iceland, east Greenland, and perhaps Svalbard and other northern ice sheets. However, the southward drifting icebergs were initially jammed in the Denmark Strait, reaching the Irminger Sea only with a lag of 155-195 years. We also conclude that the abrupt stadial terminations, the D-O warming events, were tied to iceberg melt via abundant seasonal sea ice and brine water formation in the meltwater-covered northwestern North Atlantic. In the 1/1460-year frequency band, benthic ?18O brine water spikes led the temperature maxima above Greenland and in the Irminger Sea by as little as 95 years. Thus abundant brine formation, which was induced by seasonal freezing of large parts of the northwestern Atlantic, may have finally entrained a current of warm surface water from the subtropics and thereby triggered the sudden reactivation of the THC. In summary, the internal dynamics of the east Greenland ice sheet may have formed the ultimate pacemaker of D-O cycles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

On- and off-mound sediment cores from Propeller Mound (Hovland Mound province, Porcupine Seabight) were analysed to understand better the evolution of a carbonate mound. The evaluation of benthic foraminiferal assemblages from the off-mound position helps to determine the changes of the environmental controls on Propeller Mound in glacial and interglacial times. Two different assemblages describe the Holocene and Marine Isotope Stage (MIS) 2 and late MIS 3 (~31 kyr BP). The different assemblages are related to changes in oceanographic conditions, surface productivity and the waxing and waning of the British Irish Ice Sheet (BIIS) during the last glacial stages. The interglacial assemblage is related to a higher supply of organic material and stronger current intensities in water depth of recent coral growth. During the last glaciation the benthic faunas showed high abundances of cassidulinid species, implying cold bottom waters and a reduced availability of organic matter. High sedimentation rates and the domination of Elphidium excavatum point to shelf erosion related to sea-level lowering (~50 m) and the progradation of the BIIS onto the shelf. A different assemblage described for the on-mound core is dominated by Discanomalina coronata, Gavelinopsis translucens, Planulina ariminensis, Cibicides lobatulus and to a lower degree by Hyrrokkin sarcophaga. These species are only found or show significantly higher relative abundances in on-mound samples and their maximum contribution in the lower part of the record indicates a higher coral growth density on Propeller Mound in an earlier period. They are less abundant during the Holocene, however. This dataset portrays the boundary conditions of the habitable range for the cold-water coral Lophelia pertusa, which dominates the deep-water reefal ecosystem on the upper flanks of Propeller Mound. The growth of this ecosystem occurs during interglacial and interstadial periods, whereas a retreat of corals is documented in the absence of glacial sediments on-mound. Glacial conditions with cold intermediate waters, a weak current regime and high sedimentation rates provide an unfavourable environmental setting for Lophelia corals to grow. A Late Pleistocene decrease is observed in the mound growth for Propeller Mound, which might face its complete burial in the future, as it already happened to the buried mounds of the Magellan Mound province further north.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stable isotope and ice-rafted debris records from three core sites in the mid-latitude North Atlantic (IODP Site U1313, MD01-2446, MD03-2699) are combined with records of ODP Sites 1056/1058 and 980 to reconstruct hydrographic conditions during the middle Pleistocene spanning Marine Isotope Stages (MIS) 9-14 (300-540 ka). Core MD03-2699 is the first high-resolution mid-Brunhes record from the North Atlantic's eastern boundary upwelling system covering the complete MIS 11c interval and MIS 13. The array of sites reflect western and eastern basin boundary current as well as north to south transect sampling of subpolar and transitional water masses and allow the reconstruction of transport pathways in the upper limb of the North Atlantic's circulation. Hydrographic conditions in the surface and deep ocean during peak interglacial MIS 9 and 11 were similar among all the sites with relative stable conditions and confirm prolonged warmth during MIS 11c also for the mid-latitudes. Sea surface temperature (SST) reconstructions further reveal that in the mid-latitude North Atlantic MIS 11c is associated with two plateaus, the younger one of which is slightly warmer. Enhanced subsurface northward heat transport in the eastern boundary current system, especially during early MIS 11c, is denoted by the presence of tropical planktic foraminifer species and raises the question how strongly it impacted the Portuguese upwelling system. Deep water ventilation at the onset of MIS 11c significantly preceded surface water ventilation. Although MIS 13 was generally colder and more variable than the younger interglacials the surface water circulation scheme was the same. The greatest differences between the sites existed during the glacial inceptions and glacials. Then a north - south trending hydrographic front separated the nearshore and offshore waters off Portugal. While offshore waters originated from the North Atlantic Current as indicated by the similarities between the records of IODP Site U1313, ODP Site 980 and MD01-2446, nearshore waters as recorded in core MD03-2699 derived from the Azores Current and thus the subtropical gyre. Except for MIS 12, Azores Current influence seems to be related to eastern boundary system dynamics and not to changes in the Atlantic overturning circulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Multi-Sensor Core Logger (MSCL) enables non-destructive, quasi-continuous measuroments of physical properties, reducing the time needed for discrete sample analysis. Density, compressional wave velocity (Vp), and magnetic susceptibility are measured on water-saturated sediment cores. Rapid variations in the lithology can thus be more easily recognized. The advantages of MSCL measurements over traditional sedimentological investigation methods are illustrated using several examples. Density-Vp relationships provide detailed lithological information prior to splitting the sediment cores. In terrigenous sediments, density increases with Vp, whereas in biogenic sediments it decreases. In biogenic sediments in the South Atlantic, low densities and high Vp are associated with high opal content. In biogenic sediments in the Peru Basin, density increases with carbonate content. Carbonate, which is very important for deep-sea environmental protection and for paleoclimatic studies, can be determined quantitatively from MSCL measurements in this area. In terrigenous sediments in the Bengal Fan, the acoustic impedance (the product of density and Vp) increases with grain size. There, the grain-size distribution can be rapidly derived from the acoustic impedance. Moreover, in hemipelagic sediments in the Bengal Fan, it is possible to correlate variations in magnetic susceptibility with cyclic changes in the earth's orbital parameters - an important prerequisite for detailed stratigraphic studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes in Atlantic deep water circulation were reconstructed by comparing the benthic foraminiferal delta13C record at ODP Site 1090 in the South Atlantic with similar records from the North Atlantic (Sites 982, 607, 925, 929) and deep Pacific (Site 849) oceans. Important deep water circulation changes occurred in the early Pleistocene at 1.55 Myr and during the Mid-Pleistocene Transition at 0.9 Myr. At 1.55 Myr, glacial delta13C values in the Southern Ocean became significantly lower than those in the deep Pacific, establishing a pattern that persisted throughout the late Pleistocene. We propose that the lowering of delta13C values of Southern Component Water (SCW) at this time resulted from expansion of sea ice and reduced ventilation of deep water during glacial periods after marine isotope stage 52. Accompanying this change in Southern Ocean deep water circulation was enhanced interhemispheric coupling between the North and South Atlantic after 1.55 Myr. At ~0.9 Myr, the magnitude of glacial-to-interglacial variabilityin delta13C increased and shifted to a longer frequency (100 kyr) along with oceanic delta18O (ice volume). Calculation of percent Northern Component Water (NCW) using Site 1090 as the SCW end member yielded 20-30% less reduction of NCW during glacial periods of the late Pleistocene. Also, a trend toward reduced glacial suppression of NCW during the past 400 kyr is not evident. The apparent decoupling of ice volume and deep water circulation reported previously maybe an artifact of using a Pacific, rather than a Southern Ocean, carbon isotopic record to calculate past mixing ratios of NCW and SCW.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The delta13C and Cd measurements from benthic foraminifera from Biogeochemical Ocean Flux Study (BOFS) northeast Atlantic Ocean sediment cores are presented. The delta13C values in glacial foraminifera are consistent with those from elsewhere in the North Atlantic Ocean. For intermediate water (1000 - 2000 m water depth), delta13C values were higher at the last glacial maximum than in present North Atlantic Deep Water (NADW), whereas for deep water (>2000 m) they were lower during the glacial maximum. The Cd concentrations of glacial northeast Atlantic intermediate water were lower than those of present NADW. However, deepwater Cd concentrations increased to values between NADW and present Pacific Deep Water (PDW). The delta13C and Cd data are consistent and show that the northeast Atlantic Ocean was strongly stratified with 13C enriched, low Cd intermediate water overlying 13C depleted, high Cd deep water. The glacial water column comprised two different water masses: deep water, similar in character to present Antarctic Bottom Water (AABW), and intermediate water, different in character from both AABW and NADW, and any present intermediate-depth North Atlantic water. The characteristics of glacial intermediate water were, however, similar to present near-surface waters in the North Atlantic, which suggests rapid ventilation of the glacial ocean to depths of up to 2000 m by cold, nutrient-depleted young surface waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large changes in benthic foraminiferal delta180 and delta13C occurred during the Pliocene (between 3.0 and 2.0 Ma) at Hole 665A. Oxygen isotopic compositions increased to maximum values at 2.4 Ma, correlating with an 18O enrichment observed at Hole 552A and other locations (Shackleton et al., 1984). As at Hole 606 (Keigwin, 1986), however, maximum delta180 values at 2.4 Ma were not as great as at Hole 552A, and enrichments in delta180 also occurred before 2.4 Ma. We believe that the section representing sediments from 2.5 to 2.7 or 2.8 Ma is missing at Hole 552A because of incomplete core recovery. Consequently, the older delta180 increases are not found at Hole 552A. Benthic foraminiferal delta13C values are much lower at Hole 665A than at Hole 552A, approaching the low values observed in the Pliocene Pacific Ocean. This geographic distribution of delta13C suggests that, like late Quaternary glaciations, the equatorial Atlantic Ocean was dominated during the Pliocene by deep water that originated in the Southern Ocean and had chemical characteristics very similar to the Pacific Ocean. Reduced O2 values were probably associated with low delta13C values and contributed to increased preservation of organic carbon during enriched 180 intervals of the Pliocene equatorial Atlantic.