943 resultados para Cement-Based Composites


Relevância:

30.00% 30.00%

Publicador:

Resumo:

New hybrid composites based on mesostructured V(2)O(5) containing intercalated poly(ethylene oxide), poly-o-methoxyaniline and poly(ethylene oxide)/poly-o-methoxyaniline were prepared. The results suggest that the polymers were intercalated into the layers of the mesostructured V(2)O(5). Electrochemical studies showed that the presence of both polymers in the mesostructured V(2)O(5) (ternary hybrid) leads to an increase in total charge and stability after several cycles compared with binary hybrid composites. This fact makes this material a potential component as cathode for lithium ion intercalation and further, a promising candidate for applications in batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To evaluate the biaxial and short-beam uniaxial strength tests applied to resin composites based upon their Weibull parameters, fractographic features and stress distribution. Methods. Disk- (15 mm x 1 mm) and beam-shaped specimens (10 mm x 2 mm x 1 mm) of three commercial composites (Concept/Vigodent, CA; Heliomolar/Ivoclar-Vivadent, HE; Z250/3M ESPE, FZ) were prepared. After 48h dry storage at 37 degrees C, disks and beams were submitted to piston-on-three-balls (BI) and three-point bending (UNI) tests, respectively. Data were analyzed by Weibull statistics. Fractured surfaces were observed under stereomicroscope and scanning electron microscope. Maximum principal stress (sigma(1)) distribution was determined by finite element analysis (FEA). Maximum sigma(1-BI) and sigma(1-UNI) were compared to FZ strengths calculated by applying the average failure loads to the analytical equations (sigma(a-BI) and sigma(a-UNI)). Results. For BI, characteristic strengths were: 169.9a (FZ), 122.4b (CA) and 104.8c (HE), and for UNI were: 160.3a (FZ), 98.2b (CA) and 91.6b (HE). Weibull moduli ( m) were similar within the same test. CA and HE presented statistically higher m for BI. Surface pores ( BI) and edge flaws ( UNI) were the most frequent fracture origins. sigma(1-BI) was 14% lower than sigma(a-BI.) sigma(1-UNI) was 43% higher than sigma(a-UNI). Significance. Compared to the short-beam uniaxial test, the biaxial test detected more differences among composites and displayed less data scattering for two of the tested materials. Also, biaxial strength was closer to the material`s strength estimated by FEA. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. To assess the elastic modulus (EM), volumetric shrinkage (VS), and polymerization shrinkage stress (PSS) of experimental highly filled nanohybrid composites as a function of matrix composition, filler distribution, and density. Methods. One regular viscosity nanohybrid composite (Grandio, VOCO, Germany) and one flowable nanohybrid composite (Grandio Flow, VOCO) were tested as references along with six highly filled experimental nanohybrid composites (four Bis-GMA-based, one UDMA-based, and one Ormocer (R) -based). The experimental composites varied in filler size and density. EM values were obtained from the ""three-point bending"" load-displacement curve. VS was calculated with Archimedes` buoyancy principle. PSS was determined in 1-mm thick specimens placed between two (poly) methyl methacrylate rods (empty set = 6 mm) attached to an universal testing machine. Data were analyzed using oneway ANOVA, Tukey`s test (alpha = 0.05), and linear regression analyses. Results. The flowable composite exhibited the highest VS and PSS but lowest EM. The PSS was significantly lower with Ormocer. The EM was significantly higher among experimental composites with highest filler levels. No significant differences were found between all other experimental composites regarding VS and PSS. Filler density and size did not influence EM, VS, or PSS. Significance. Neither the filler configuration nor matrix composition in the investigated materials significantly influenced composite shrinkage and mechanical properties. The highest filled experimental composite seemed to increase EM by keeping VS and PSS low; however, matrix composition seemed to be the determinant factor for shrinkage and stress development. The Ormocer, with reduced PSS, deserves further investigation. Filler size and density did not influence the tested parameters. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: An experimental mineral trioxide aggregate sealer (MTAS) has been developed for use as a root canal sealer. The aim of this study was to evaluate the setting time, pH, and calcium ion release of MTAS compared with white Portland cement (CPB-40; Votorantin Cimentos, Camargo Correa SA, Pedro Leopoldo, MG, Brazil), white MTA Angelus (MTA; Angelus, Londrina, PR, Brazil), and AH Plus (Dentsply DeTrey, Konstanz, Germany). Methods: For the evaluation of setting time, each material was analyzed using Gilmore-type needles. Polyethylene tubes with the materials were immersed in distilled water for the measurement of pH (digital pH meter) and calcium release (atomic absorption spectrophotometry). The evaluations were performed at 3, 6, 12, 24, and 48 hours and 7, 14, and 28 days. Data were analyzed by analysis of variance and the Tukey test at 5% significance level. Results: MTAS showed higher calcium release at all experimental periods, a greater increase in pH up to 48 hours and the longest setting time. Conclusions: MTAS presented favorable properties for its indication as a root canal sealer. (J Endod 2011;37:844-846)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A minimally invasive caries-removal technique preserves potentially repairable, caries-affected dentin. Mineral-releasing cements may promote remineralization of soft residual dentin. This study evaluated the in vivo remineralization capacity of resin-based calcium-phosphate cement (Ca-PO(4)) used for indirect pulp-capping. Permanent carious and sound teeth indicated for extraction were excavated and restored either with or without the Ca-PO(4) base (control), followed by adhesive restoration. Study teeth were extracted after 3 months, followed by sectioning and in vitro microhardness analysis of the cavity floor to 115-mu m depth. Caries-affected dentin that received acid conditioning prior to Ca-PO(4) basing showed significantly increased Knoop hardness near the cavity floor. The non-etched group presented results similar to those of the non-treated group. Acid etching prior to cement application increased microhardness of residual dentin near the interface after 3 months in situ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minimally invasive caries-removal procedures remove only caries-infected dentin and preserve caries-affected dentin that becomes remineralized. Dental cements containing calcium phosphate promote remineralization. This study evaluated the in vivo remineralization capacity of resin-based calcium-phosphate cement (Ca-P) used for indirect pulp-capping. Carious and sound teeth indicated for extraction were randomly restored with the Ca-P base or without base (control), followed by adhesive restoration. Study teeth were extracted after three months, followed by elemental analysis of the cavity floor. Mineral content of affected or sound dentin at the cavity floor was quantified by electron probe micro-analysis to 100-mu m depth. After three months, caries-affected dentin underneath the Ca-P base showed significantly increased calcium and phosphorus content to a depth of 30 mu m. Mineral content of treated caries-affected dentin was in the range of healthy dentin, revealing the capacity of Ca-P base to promote remineralization of caries-affected dentin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. The presence of arsenic in various types of mineral trioxide aggregate (MTA) and Portland cements were evaluated to verify if they comply with the ISO-recommended limit for water-based cements of 2 mg arsenic/kg material. Study design. An amount of 5 mL of hydrochloric acid was added to 2 g each of MTA and Portland cement to be analyzed. After 15 minutes, the material was filtered and the volume of supernatant was diluted with reagent-grade water up to 40 mL. Atomic absorption spectrophotometry readings were performed in triplicate. Results. The following mean values were obtained: CPM (Egeo, Buenos Aires, Argentina) 11.06 mg/kg; CPM sealer (Egeo) 10.30 mg/kg; MTA- Obtura (Angelus, Londrina, PR, Brazil) 0.39 mg/kg; Experimental MTA: 10.30 mg/kg; White MTA- Angelus (Angelus) 1.03 mg/kg; Gray MTA- Angelus (Angelus) 5.91 mg/kg; ProRoot-MTA (Dentsply/Tulsa Dental Specialties, Tulsa, OK) 5.25 mg/kg; Gray Portland cement (Votorantim Cimentos, Cubatao, SP, Brazil): 34.27 mg/kg; and White Portland cement (Cimento Rio Branco, Rio de Janeiro, RJ, Brazil) 0.52 mg/kg. Conclusion. All tested materials presented arsenic in their composition. The form of arsenic was not analyzed nor the toxicity of the arsenic found. Only MTA- Obtura, White MTA- Angelus, and White Portland cement presented arsenic levels below the limit set in the ISO 9917-1 standard. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 909-913)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is no consensus in literature regarding the best plan for prosthetic rehabilitation with partial multiple adjacent implants to minimize stress generated in the bone-implant interface. The aim of this study was to evaluate the biomechanical behavior of cemented fixed partial dentures, splinted and nonsplinted, on Morse taper implants and with different types of coating material (ceramic and resin), using photoelastic stress analysis. A photoelastic model of an interposed edentulous space, missing a second premolar and a first molar, and rehabilitated with 4 different types of cemented crowns and supported by 2 adjacent implants was used. Groups were as follows: UC, splinted ceramic crowns; IC, nonsplinted ceramic crowns; UR, splinted resin crowns; and IR, nonsplinted resin crowns. Different vertical static loading conditions were performed: balanced occlusal load, 10 kgf; simultaneous punctiform load on the implanted premolar and molar, 10 kgf; and alternate punctiform load on the implanted premolar and molar, 5 kgf. Changes in stress distribution were analyzed in a polariscope, and digital photographs were taken of each condition to allow comparison of stress pattern distribution around the implants. Cementation of the fixed partial dentures generated stresses between implants. Splinted restorations distributed the stresses more evenly between the implants than nonsplinted when force was applied. Ceramic restorations presented better distribution of stresses than resin restorations. Based on the results obtained, it was concluded that splinted ceramic restorations promote better stress distribution around osseointegrated implants when compared with nonsplinted crowns; metal-ceramic restorations present less stress concentration and magnitude than metal-plastic restorations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steel fiber reinforced concrete (SFRC) is widely applied in the construction industry. Numerical elastoplastic analysis of the macroscopic behavior is complex. This typically involves a piecewise linear failure curve including corner singularities. This paper presents a single smooth biaxial failure curve for SFRC based on a semianalytical approximation. Convexity of the proposed model is guaranteed so that numerical problems are avoided. The model has sufficient flexibility to closely match experimental results. The failure curve is also suitable for modeling plain concrete under biaxial loading. Since this model is capable of simulating the failure states in all stress regimes with a single envelope, the elastoplastic formulation is very concise and simple. The finite element implementation is developed to demonstrate the conciseness and the effectiveness of the model. The computed results display good agreement with published experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electroactivematerials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidenefluoride),PVDF,have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibroblast Foreskin 1. In vivo tests were also performed using 6-week-old C57Bl/6 mice. It was concluded that zeolite and clay composites are biocompatible materials promoting cell response and not showing in vivo pro-inflammatory effects which renders both of them attractive for biological applications and tissue engineering, opening interesting perspectives to development of scaffolds from these composites. Ferrite and silver nanoparticle composites decrease osteoblast cell viability and carbon nanotubes decrease fibroblast viability. Further, carbon nanotube composites result in a significant increase in local vascularization accompanied an increase of inflammatory markers after implantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work it is demonstrated that the capacitance between two cylinders increases with the rotation angle and it has a fundamental influence on the composite dielectric constant. The dielectric constant is lower for nematic materials than for isotropic ones and this can be attributed to the effect of the filler alignment in the capacitance. The effect of aspect ratio in the conductivity is also studied in this work. Finally, based on previous work and by comparing to results from the literature it is found that the electrical conductivity in this type of composites is due to hopping between nearest fillers resulting in a weak disorder regime that is similar to the single junction expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numeric model has been proposed to investigate the mechanical and electrical properties of a polymeric/carbon nanotube (CNT) composite material subjected to a deformation force. The reinforcing phase affects the behavior of the polymeric matrix and depends on the nanofiber aspect ratio and preferential orientation. The simulations show that the mechanical behavior of a computer generated material (CGM) depends on fiber length and initial orientation in the polymeric matrix. It is also shown how the conductivity of the polymer/CNT composite can be calculated for each time step of applied stress, effectively providing the ability to simulate and predict strain-dependent electrical behavior of CNT nanocomposites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variation of the physical properties of four differ- ent carbon nanofibers (CNFs), based-polymer nano- composites incorporated in the same polypropylene (PP) matrix by twin-screw extrusion process was investigated. Nanocomposites fabricated with CNFs with highly graphitic outer layer revealed electrical isolation-to-conducting behaviors as function of CNF’s content. Nanocomposites fabricated with CNFs with an outer layer consisting on a disordered pyro- litically stripped layer, in contrast, revealed better mechanical performance and enhanced thermal sta- bility. Further, CNF’s incorporation into the polymer increased the thermal stability and the degree of crystallinity of the polymer, independently on the filler content and type. In addition, dispersion of the CNFs’ clusters in PP was analyzed by transmitted light opti- cal microscopy, and grayscale analysis (GSA). The results showed a correlation between the filler concentration and the variance, a parameter which measures quantitatively the dispersion, for all composites. This method indicated a value of 1.4 vol% above which large clusters of CNFs cannot be dispersed effectively and as a consequence only slight changes in mechanical performance are observed. Finally, this study establishes that for tailoring the physical properties of CNF based-polymer nanocomposites, both adequate CNFs structure and content have to be chosen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações