850 resultados para Cellulose acetate membranes
Resumo:
An efficient Friedel-Crafts alkylation of aromatic compounds with ethyl alpha -chloro-alpha-(ethylthio)acetate catalysed by ytterbium triflate, followed by desulfurisation of the product provides a convenient methodology for the synthesis of ethyl arylacetates of aromatic and heteroaromatic compounds. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The modular formalism of Rangarajan [J. Electroanal. Chem., 55 (1974) 297] has been applied to the admittance of lipid bilayer membranes. The method leads to equations which clearly show the interrelations between the various partial processes involved in ion transport, and which allow examination of model assumptions without the need for a complete rederivation of the membrane admittance. Explicit expressions are given for both the continuum and single jump models. The former includes the ionic displacement component, important mostly at high frequencies.
Resumo:
The modular formalism of Rangarajan [J. Electroanal. Chem., 55 (1974) 297] has been applied to the admittance of lipid bilayer membranes. The method leads to equations which clearly show the interrelations between the various partial processes involved in ion transport, and which allow examination of model assumptions without the need for a complete rederivation of the membrane admittance. Explicit expressions are given for both the continuum and single jump models. The former includes the ionic displacement component, important mostly at high frequencies.
Resumo:
Novel mixed-matrix membranes prepared by blending sodium alginate (NaAlg) with polyvinyl alcohol (PVA) and certain heteropolyacids (HPAs), such as phosphomolybdic acid (PMoA), phosphotungstic acid (PWA) and silicotungstic acid (SWA), followed by ex-situ cross-linking with glutaraldehyde (GA) to achieve the desired mechanical and chemical stability, are reported for use as electrolytes in direct methanol fuel cells (DMFCs). NaAlg-PVA-HPA mixed matrices possess a polymeric network with micro-domains that restrict methanol cross-over. The mixed-matrix membranes are characterised for their mechanical and thermal properties. Methanol cross-over rates across NaAlg-PVA and NaAlg-PVA-HPA mixed-matrix membranes are studied by measuring the mass balance of methanol using a density meter. The DMFC using NaAlg-PVA-SWA exhibits a peak power-density of 68 mW cm(-2) at a load current-density of 225 mA cm(-2), while operating at 343 K. The rheological properties of NaAlg and NaAlg-PVA-SWA viscous solutions are studied and their behaviour validated by a non-Newtonian power-law.
Resumo:
Biological membranes are tightly linked to the evolution of life, because they provide a way to concentrate molecules into partially closed compartments. The dynamic shaping of cellular membranes is essential for many physiological processes, including cell morphogenesis, motility, cytokinesis, endocytosis, and secretion. It is therefore essential to understand the structure of the membrane and recognize the players that directly sculpt the membrane and enable it to adopt different shapes. The actin cytoskeleton provides the force to push eukaryotic plasma membrane in order to form different protrusions or/and invaginations. It has now became evident that actin directly co-operates with many membrane sculptors, including BAR domain proteins, in these important events. However, the molecular mechanisms behind BAR domain function and the differences between the members of this large protein family remain largely unresolved. In this thesis, the structure and functions of the I-BAR domain family members IRSp53 and MIM were thoroughly analyzed. By using several methods such as electron microscopy and systematic mutagenesis, we showed that these I-BAR domain proteins bind to PI(4,5)P2-rich membranes, generate negative membrane curvature and are involved in the formation of plasma membrane protrusions in cells e.g. filopodia. Importantly, we characterized a novel member of the BAR-domain superfamily which we named Pinkbar. We revealed that Pinkbar is specifically expressed in kidney and epithelial cells, and it localizes to Rab13-positive vesicles in intestinal epithelial cells. Remarkably, we learned that the I-BAR domain of Pinkbar does not generate membrane curvature but instead stabilizes planar membranes. Based on structural, mutagenesis and biochemical work we present a model for the mechanism of the novel membrane deforming activity of Pinkbar. Collectively, this work describes the mechanism by which I-BAR domain proteins deform membranes and provides new information about the biological roles of these proteins. Intriguingly, this work also gives evidence that significant functional plasticity exists within the I-BAR domain family. I-BAR proteins can either generate negative membrane curvature or stabilize planar membrane sheets, depending on the specific structural properties of their I-BAR domains. The results presented in this thesis expand our knowledge on membrane sculpting mechanisms and shows for the first time how flat membranes can be generated in cells.
Resumo:
The interactions between the polyene antibiotic amphotericin B with dipalmitoylphosphatidylcholine were investigated in vesicles (using circular dichroism) and in chloroform solution (using circular dichroism and IH, I3C, and 31P nuclear magnetic resonance). The results show that amphotericin B readily aggregates in vesicles and that the extent of aggregation depends on the 1ipid:drug concentration ratio. Introduction of sterol molecules into the membrane hastens the process of aggregation of amphotericin B. In chloroform solutions amphotericin B strongly interacts with phospholipid molecules to form a stoichiometric complex. The results suggest that there are interactions between the conjugated heptene stretch of amphotericin B and the methylene groups of lipid acyl chains, while the sugar moiety interacts with the phosphate head group by the formation of a hydrogen bond. A model is proposed for the lipid-amphotericin B complex, in which amphotericin B interacts equally well with the two lipid acyl chains, forming a 1:l complex.
Resumo:
Poly(ethylene-co-vinyl acetate) (EVA) films were irradiated with a 1.2MeV electron beam at varied doses over the range 0-270kGy in order to investigate the modifications induced in its optical, electrical and thermal properties. It was observed that optical band gap and activation energy of EVA films decreased upon electron irradiation, whereas the transition dipole moment, oscillator strength and number of carbon atoms per cluster were found to increase upon irradiation. Further, the dielectric constant, the dielectric loss, and the ac conductivity of EVA films were found to increase with an increase in the dose of electron radiation. The result further showed that the thermal stability of EVA film samples increased upon electron irradiation.
Resumo:
Two series of cholesterol-based cationic gemini lipids with and without hydroxyl functions at the headgroups possessing different lengths of polymethylene -(CH2)(n)-] (n = 3, 4, 5, 6, 12) spacer have been synthesized. Each gemini lipid formed stable suspension in water. The suspensions of these gemini lipids in water were investigated using transmission electron microscopy, dynamic light scattering, zeta potential measurements and X-ray diffraction to characterize the nature of the individual aggregates formed therein. The aggregation properties of these gemini lipids in water were found to strongly depend upon the length of the spacer and the presence of hydroxyl group at the headgroup region. Lipoplex formation (DNA binding) and the release of the DNA from such lipoplexes were performed to understand the nature of interactions that prevail between these cationic cholesterol aggregates and duplex DNA. The interactions between such gemini lipids and DNA depend both on the presence of OH on the headgroups and the spacer length between the headgroups. Finally, we studied the effect of incorporation of each cationic gemini lipid into dipalmitoyl phosphatidylcholine vesicles using differential scanning calorimetry. The properties of the resulting mixed membranes were found again to depend upon the nature of the headgroup and the spacer chain length.
Resumo:
The effect of arachidonic acid (AA) on the activity of diacylglycerol (DG) kinase in neural membranes was investigated. When rat brain cortical membranes were incubated with 0.5 mM dipalmitin and [gamma-P-32]ATP, formation of phosphatidic acid (PA) was observed. It was linear up to 5 min, and the initial rate was similar to 1.0 nmol/min/mg of protein. The DG kinase activity was stimulated twofold by 0.25 mM AA. The stimulation was apparent at the earliest time point measured (1 min) and with the lowest concentration of AA tested (62.5 mu M). The stimulation was proportional to the concentration of AA up to 250 mu M. AA was the most potent stimulator of DG kinase, and linolenic acid showed similar to 40% stimulation. Oleic acid showed no effect, whereas linoleic and the saturated fatty acids tested were inhibitory. AA stimulation of DG kinase was observed only with membranes of cerebrum, cerebellum, and myelin and not with brain cytosol or liver membranes. AA also stimulated the formation of PA in the absence of added dipalmitin (endogenous activity) with membranes prepared from whole brain. DG kinase of neural membranes was extracted with 2 M NaCl, which on dialysis yielded a precipitate. Both the precipitate and the supernatant showed DG kinase activity, but only the enzyme in the precipitate was stimulated by AA at concentrations as low as 25 mu M. It is suggested that AA, through its effect on DG kinase, regulates the level of DG in neural membranes, which in turn regulates protein kinase C activity.
Resumo:
The effect of docosahexaenoic acid (DHA) on the diacylglycerol kinase (DG kinase) activity in rat brain membranes was investigated. DHA at 500 mu M concentration, stimulated the enzyme activity by about 2 fold. This effect was concentration-and time-dependent and was observed after very short periods of incubation (one min). DHA stimulation of DG kinase was observed only with rat brain membranes, and not with rat brain cytosol or rat liver membranes. Treating the rat brain membranes with phospholipase A(2) which released free fatty acids including DHA, significantly stimulated the DG kinase activity. It is concluded that DHA through its stimulatory effect on DG kinase may regulate the signalling events in growth-related situations in the brain such as synaptogenesis.
Resumo:
A methodology based on Claisen rearrangement and Wacker oxidation for the spirocyclopentannulation of ketones, and its application to a highly stereoselective first total synthesis of dihydrotoch
Resumo:
The dynamics of poly(vinyl acetate) in toluene solution has been examined by C-13 and proton relaxation. C-13 spin-lattice relaxation time and nuclear Overhauser enhancement measurements were carried out as a function of temperature at 50.3 and 100.6 MHz. The spin-lattice relaxation times for backbone protons were measured at different temperatures at 200 MHz. The relaxation data have been analyzed using the Hall-Weber-Helfand (HWH) model, which describes backbone dynamics in terms of conformational transitions and the Dejean-Laupretre-Monnerie (DLM) model, which includes bond librations in addition to conformational transitions. The parameters obtained from the analysis of C-13 relaxation data were utilized to predict the proton relaxation data. The DLM model was found to be more successful in reproducing the experimental results. To study the influence of libration further, proton relaxation data for poly(vinyl acetate) over a wider range of temperature reported in the literature were analyzed by these two models. The DLM model could reproduce the experimental data at all temperatures whereas the HWH model was found to be successful only in accounting for the experimental data at high temperatures. The results demonstrate the importance of including the librational mode in the description of the backbone dynamics in polymers.
Resumo:
The bending rigidity kappa of bilayer membranes was studied with coarse grained soft repulsive potentials using dissipative particle dynamics (DPD) simulations. Using a modified Andersen barostat to maintain the bilayers in a tensionless state, the bending rigidity was obtained from a Fourier analysis of the height fluctuations. From simulations carried out over a wide range of membrane thickness, the continuum scaling relation kappa proportional to d(2) was captured for both the L-alpha and L-beta phases. For membranes with 4 to 6 tail beads, the bending rigidity in the L-beta phase was found to be 10-15 times higher than that observed for the L-alpha phase. From the quadratic scalings obtained, a six fold increase in the area stretch modulus, k(A) was observed across the transition. The magnitude of increase in both kappa and k(A) from the L-alpha to the L-beta phase is consistent with current experimental observations in lipid bilayers and to our knowledge provides for the first time a direct evaluation of the mechanical properties in the L-beta phase.