978 resultados para CRYSTALLINE STRUCTURE
Resumo:
To obtain SnO2 films to be used for surface protection of fluoride glasses, a non-aqueous sol-gel route for the preparation was developed. An ethanolic SnO2 colloidal suspension was prepared by thermohydrolysis of SnCl4 solution at 70 degreesC. By using this procedure, redispersable powders with nanometer sized particles were obtained. Films were obtained by dip coating on glass and mica substrates. The structures of the ethanolic precursor suspension and films were compared to those of similar samples prepared by the classical aqueous sol-gel route. Comparative analyses performed by photon correlation spectroscopy demonstrated that the powders obtained by freeze-drying are fully redispersable either in aqueous or in alcoholic solutions at pH greater than or equal to 8. As prepared sols and redispersed colloidal suspensions have hydrodynamic radius distribution (2-14 nm) with an average size close to 7 nm. The variations in film structures with firing temperature were investigated by small-angle X-ray scattering and X-ray reflectometry. The experimental results show that the films have a two level porous structure composed of agglomerates of primary colloidal particles. The sintering of the primary particles leads to the densification of agglomerates and to the formation of inter-agglomerate spatially correlated pores. The volume fraction of intra-agglomerate pores is reduced from approximate to 50% to approximate to 30% by the precipitation of precursor salts partially hydrolyzed in ethanolic solution. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Glass structure and fluorine motion dynamics are investigated in lead-cadmium fluorgermanate glasses by means of differential scanning calorimetry, Raman scattering, x-ray absorption (EXAFS), electrical conductivity (EC), and F-19 nuclear magnetic resonance (NMR) techniques. Glasses with composition 60PbGeO(3)-xPbF(2)-yCdF(2) (in mol %), with x+y=40 and x=10, 20, 30, 40, are studied. Addition of metal fluorides to the base PbGeO3 glass leads to a decrease of the glass transition temperature (T-g) and to an enhancement of the ionic conductivity properties. Raman and EXAFS data analysis suggest that metagermanate chains form the basic structural feature of these glasses. The NMR study leads to the conclusion that the F-F distances are similar to those found in pure crystalline phases. Experimental results suggest the existence of a heterogeneous glass structure at the molecular scale, which can be described by fluorine rich regions permeating the metagermanate chains. The temperature dependence of the NMR line shapes and relaxation times exhibits the qualitative and quantitative features associated with the high fluorine mobility in these systems. (C) 2004 American Institute of Physics.
Resumo:
Siloxane-poly(oxyethylene) hybrids obtained by the sol-gel process and containing short polymer chain have been doped with potassium triflate (KCF3SO3). The local structure of these hybrids was investigated by X-ray absorption spectroscopy near the potassium K-edge. Small angle X-ray scattering was used to determine the structure at the nanometer scale. Results revealed that at low and medium potassium concentration (n = [O][K] >= 8, where n represents the molar ratio of ether-type oxygen atoms per alkaline cation) the cations interact mainly with the polymer chains, while at larger doping level (n < 8) the formation of a polyehter:KCF3SO3 Complex is observed. The nanoscopic structure of the hybrids is also affected by doping. By increasing the doping level, decreasing trends in the electronic density contrast between siloxane nanoparticles and polyether matrix and in the siloxane interparticle distance are observed. At high doping level the small angle X-ray scattering patterns are strongly modified, showing the disappearance of the correlation peak and the formation of a potassium-containing nanophase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work we investigate the effect of hydrochloric acid (HC) addition on the structure and thermal and magnetic properties of iron-doped siloxane-polyoxyethylene (POE) hybrids prepared by the sol-gel route. X-ray powder diffraction (XRD) and X-ray absorption near edge structure (XANES) results reveal the dominance of ferrihydrite nanoparticles and a mixture of this phase with FeCl4- species in the hybrid prepared without and with HCl, respectively. Thermal analysis reveals the existence of two crystalline polymeric phases in the hybrid prepared with HCl whereas hybrids prepared without HCl are amorphous. The 105 and 60 Angstrom sized ferrihydrite nanoparticles were detected by SAXS analysis of the composite prepared without and with HCl, respectively. The magnetic results suggest that in both samples antiferromagnetic nanoparticles coexist with small clusters/isolated ions. In the sample without HCl addition, larger particles dominate the magnetic behavior, while the opposite occurs for the sample prepared using HCl catalyst. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The granules of waxy corn starch were isolated and various samples were separated by size and classified according to their average diameter in: non-separated granules (N), granules with diameter < 15 μm (S) and granules with diameter ≥ 15 μm (L). The samples were hydrolyzed by bacterial α-amylase and fungal amyloglucosidase. The starch granules remaining after enzymatic hydrolysis were analysed by X-ray diffraction and optical and scanning electron microscopy. Sephadex G-50 gel permeation chromatography of the dissolved residues from the hydrolysis of the N and S samples was performed directly and after successive enzymatic digestion with pullulanase and β-amylase. The results showed that the percentage of hydrolysis increased with a decrease in diameter. No apparent differences in waxy corn starch when observed under light and scanning electronic microscope were observed, regardless of diameter and enzyme action, although both large and small granules showed extensive surface corrosion after enzymatic attack. X-ray analysis suggested a decrease in the quantity of crystalline areas in the smaller granules, which would explain the high percentage of hydrolysis evidenced by these granules. The elution patterns of the α-glucans of both starches (N and S) were similar and reveled the presence of two fractions which were not susceptible to a-amylase and amyloglucosidase attack suggesting that these fractions were involved in the waxy corn starch crystalline regions. Debranching with pullulanase followed by gel-permeation chromatography showed that the amylopectins from the starch granules studied contained three groups of unit chains instead of the two reported in the literature.
Resumo:
The results of the histopathological analyses after the implantation of highly crystalline PVA microspheres in subcutaneous tissues of Wistar rats are here in reported. Three different groups of PVA microparticles were systematically studied: highly crystalline, amorphous, and commercial ones. In addition to these experiments, complementary analyses of architectural complexity were performed using fractal dimension (FD), and Shannon's entropy (SE) concepts. The highly crystalline microspheres induced inflammatory reactions similar to the ones observed for the commercial ones, while the inflammatory reactions caused by the amorphous ones were less intense. Statistical analyses of the subcutaneous tissues of Wistar rats implanted with the highly crystalline microspheres resulted in FD and SE values significantly higher than the statistical parameters observed for the amorphous ones. The FD and SE parameters obtained for the subcutaneous tissues of Wistar rats implanted with crystalline and commercial microparticles were statistically similar. Briefly, the results indicated that the new highly crystalline microspheres had biocompatible behavior comparable to the commercial ones. In addition, statistical tools such as FD and SE analyses when combined with histopathological analyses can be useful tools to investigate the architectural complexity tissues caused by complex inflammatory reactions. © 2012 WILEY PERIODICALS, INC.
Resumo:
Cystalline ceria (CeO2) nanoparticles have been synthesized by a simple and fast microwave-assisted hydrothermal (MAH) under NaOH, KOH, and NH4OH mineralizers added to a cerium ammonium nitrate aqueous solution. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transformed-IR and Raman spectroscopies. Rietveld refinement reveals a cubic structure with a space group Fm3m while infrared data showed few traces of nitrates. Field emission scanning microcopy (FEG-SEM) revealed a homogeneous size distribution of nanometric CeO2 nanoparticles. The MAH process in KOH and NaOH showed most effective to dehydrate the adsorbed water and decrease the hydrogen bonding effect leaving a weakly agglomerated powder of hydrated ceria. TEM micrographs of CeO2 synthesized under MAH conditions reveal particles well-dispersed and homogeneously distributed. The MAH enabled cerium oxide to be synthesized at 100 °C for 8 min. © 2012 Elsevier B.V. All rights reserved.
Resumo:
By combining galvanic displacement and electrodeposition techniques, an ordered Fe20Rh80 structure deposited onto brass was investigated by X-ray diffractometry, Mössbauer spectroscopy and magnetization measurements. Mössbauer and X-ray diffraction analyses suggest that the Fe-Rh alloy directly electrodeposited onto brass displays a nanocrystalline state while a similar alloy deposited onto Ag/brass shows a faced centered cubic-like structure, with dendrites-like features. These results directly indicate that the presence of Ag seed layer is responsible for the Fe-Rh alloy crystallization process. In addition, room temperature Mössbauer data indicate firstly paramagnetic states for two Fe-species. In the dominant Fe-species (major fraction of the Mössbauer spectra), Fe atoms are situated at a cubic environment and it can be attributed to the γ-Fe20Rh80 alloy based on their hyperfine parameters. In the second species, Fe atoms are placed in a non-local symmetry, which can be related to Fe atoms at the grain boundaries or/and Fe small clusters. These Fe-clusters are in superparamagnetic state at room temperature, but they may be ordered below 45 K, as suggested by magnetization data. © 2013 Elsevier B.V. All rights reserved.
Resumo:
An efficient microwave-hydrothermal (MAH) method has been developed for the synthesis of highly crystalline Co3O4 spinel nanocubes via β-Co(OH)2 without any surfactant assistance. The structure and surface chemical composition along the growth process are studied. The effects as well as the merits of the MAH method on the processing and characteristics of obtained Co3O4 spinel nanocubes are highlighted. © 2013 The Royal Society of Chemistry.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
High molecular weight semi crystalline thermoplastic poly(ester urethanes), TPEUs, were prepared from a vegetable oil-based diisocyanate, aliphatic diol chain extenders and poly(ethylene adipate) macro diol using one-shot, pre-polymer and multi-stage polyaddition methods. The optimized polymerization reaction achieved ultra-high molecular weight TPEUs (>2 million as determined by GPC) in a short time, indicating a very high HPMDI diol reactivity. TPEUs with very well controlled hard segment (HS) and soft segment (SS) blocks were prepared and characterized with DSC, TGA, tensile analysis, and WAXD in order to reveal structure property relationships. A confinement effect that imparts elastomeric properties to otherwise thermoplastic TPEUs was revealed. The confinement extent was found to vary predictably with structure indicating that one can custom engineer tougher polyurethane elastomers by "tuning" soft segment crystallinity with suitable HS block structure. Generally, the HPMDI-based TPEUs exhibited thermal stability and mechanical properties comparable to entirely petroleum-based TPEUs. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We compare the photoemission and electron energy loss spectra of crystalline poly(vinylidene-fluoride with trifluoroethylene: 70%: 30%), P(VDF–TrFE), films, fabricated by the Langmuir–Blodgett technique and annealed in vacuum, with in situ thermally evaporated films of poly(vinylidene-fluoride) (PVDF) in vacuum. The electronic structure and vibrational modes of the short chain PVDF films compare well with the crystalline P(VDF–TrFE) films indicating that vacuum annealed films prepared ex situ are free of significant surface contamination once vacuum annealed. The electronic structure for the short chain PVDF films exhibits, however, different temperature dependence than the crystalline P(VDF–TrFE) films. PACS: 68.47.Mn; 71.20.Rv; 63.22.+m; 73.22.-f
Resumo:
Semiconductor nanowhiskers (NWs) made of III-V compounds exhibit great potential for technological applications. Controlling the growth conditions, such as temperature and diameter, it is possible to alternate between zinc-blende (ZB) and wurtzite (WZ) crystalline phases, giving origin to the so called polytypism. This effect has great influence in the electronic and optical properties of the system, generating new forms of confinement to the carriers. A theoretical model capable to accurately describe electronic and optical properties in these polytypical nanostructures can be used to study and develop new kinds of nanodevices. In this study, we present the development of a wurtzite/zinc-blende polytypical model to calculate the electronic band structure of nanowhiskers based on group theory concepts and the k.p method. Although the interest is in polytypical superlattices, the proposed model was applied to a single quantum well of InP to study the physics of the wurtzite/zinc-blende polytypism. By the analysis of our results, some trends can be predicted: spatial carriers' separation, predominance of perpendicular polarization (xy plane) in the luminescence spectra, and interband transition blueshifts with strain. Also, a possible range of values for the wurtzite InP spontaneous polarization is suggested. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767511]
Resumo:
Cellulases participate in a number of biological events, such as plant cell wall remodelling, nematode parasitism and microbial carbon uptake. Their ability to depolymerize crystalline cellulose is of great biotechnological interest for environmentally compatible production of fuels from lignocellulosic biomass. However, industrial use of cellulases is somewhat limited by both their low catalytic efficiency and stability. In the present study, we conducted a detailed functional and structural characterization of the thermostable BsCe15A (Bacillus subtilis cellulase 5A), which consists of a GH5 (glycoside hydrolase 5) catalytic domain fused to a CBM3 (family 3 carbohydrate-binding module). NMR structural analysis revealed that the Bacillus CBM3 represents a new subfamily, which lacks the classical calcium-binding motif, and variations in NMR frequencies in the presence of cellopentaose showed the importance of polar residues in the carbohydrate interaction. Together with the catalytic domain, the CBM3 forms a large planar surface for cellulose recognition, which conducts the substrate in a proper conformation to the active site and increases enzymatic efficiency. Notably, the manganese ion was demonstrated to have a hyper-stabilizing effect on BsCel5A, and by using deletion constructs and X-ray crystallography we determined that this effect maps to a negatively charged motif located at the opposite face of the catalytic site.