959 resultados para COSMIC COINCIDENCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Situs inversus (SI) is a relatively rare occurrence in patients with pancreatic adenocarcinoma. Pancreatic resection in these patients has rarely been described. CT scan imaging is a principle modality for detecting pancreatic cancer and its use in SI patients is seldom reported. CASE PRESENTATION: We report a 48 year old woman with SI who, despite normal CT scan 8 months earlier, presented with obstructive jaundice and a pancreatic head mass requiring a pancreaticoduodenectomy. The surgical pathology report demonstrated pancreatic adenocarcinoma. CONCLUSION: SI is a rare condition with concurrent pancreatic cancer being even rarer. Despite the rarity, pancreaticoduodenectomy in these patients for resectable lesions is safe as long as special consideration to the anatomy is taken. Additionally, radiographic imaging has significantly improved detection of early pancreatic cancer; however, there continues to be a need for improved detection of small neoplasms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations of stable and radioactive nuclides produced by cosmic ray particles in meteorites allow us to track the long term average of the primary flux of galactic cosmic rays (GCR). During the past ∼10 Ma, the average GCR flux remained constant over timescales of hundreds of thousands to millions of years, and, if corrected for known variations in solar modulation, also during the past several years to hundreds of years. Because the cosmic ray concentrations in meteorites represent integral signals, it is difficult to assess the limits of uncertainty of this statement, but they are larger than the often quoted analytical and model uncertainties of some 30%. Time series of concentrations of the radionuclide 10Be in terrestrial samples strengthen the conclusions drawn from meteorite studies, indicating that the GCR intensity on a ∼0.5 million year scale has remained constant within some ±10% during the past ∼10 million years. The very long-lived radioactive nuclide 40K allows to assess the GCR flux over about the past one billion years. The flux over the past few million years has been the same as the longer-term average in the past 0.5–1 billion years within a factor of ∼1.5. However, newer data do not confirm a long-held belief that the flux in the past few million years has been higher by some 30–50% than the very long term average. Neither does our analysis confirm a hypothesis that the iron meteorite data indicate a ∼150 million year periodicity in the cosmic ray flux, possibly related to variations in the long-term terrestrial climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, most cosmic ray data are obtained by detectors on satellites, aircraft, high-altitude balloons and ground (neutron monitors). In our work, we examined whether Liulin semiconductor spectrometers (simple silicon planar diode detectors with spectrometric properties) located at high mountain observatories could contribute new information to the monitoring of cosmic rays by analyzing data from selected solar events between 2005 and 2013. The decision thresholds and detection limits of these detectors placed at Jungfraujoch (Switzerland; 3475 m a.s.l.; vertical cut-off rigidity 4.5 GV) and Lomnicky stıt (Slovakia; 2633 m a.s.l.; vertical cut-off rigidity 3.84 GV) highmountain observatories were determined. The data showed that only the strongest variations of the cosmic ray flux in this period were detectable. The main limitation in the performance of these detectors is their small sensitive volume and low sensitivity of the PIN photodiode to neutrons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed cosmogenic nuclides in metal and/or silicate (primarily olivine) separated from the main-group pallasites Admire, Ahumada, Albin, Brahin, Brenham, Esquel, Finmarken, Glorieta Mountain, Huckitta, Imilac, Krasnojarsk, Marjalahti, Molong, Seymchan, South Bend, Springwater, and Thiel Mountains and from Eagle Station. The metal separates contained an olivine fraction which although small, <1 wt% in most cases, nonetheless contributes significantly to the budgets of some nuclides (e.g., up to 35% for Ne-21 and Al-26). A correction for olivine is therefore essential and was made using model calculations and/or empirical relations for the production rates of cosmogenic nuclides in iron meteoroids and/or measured elemental concentrations. Cosmic-ray exposure (CRE) ages for the metal phases of the main-group pallasites range from 7 to 180 Ma, but many of the ages cluster around a central peak near 100 Ma. These CRE ages suggest that the parent body of the main-group pallasites underwent a major break-up that produced most of the meteorites analyzed. The CRE age distribution for the pallasites overlaps only a small fraction of the distribution for the IIIAB iron meteorites. Most pallasites and IIIAB irons originated in different collisions, probably on different parent bodies; a few IIIABs and pallasites may have come out of the same collision but a firm conclusion requires further study. CRE ages calculated from noble gas and radionuclide data of the metal fraction are higher on average than the Ne-21 exposure ages obtained for the olivine samples. As the metal and olivine fractions were taken in most cases from different specimens, the depth-dependency of the production rate ratio Be-10/Ne-21 in metal, not accounted for in our calculations, may explain the difference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples from Ocean Drilling Program Hole 761C, collected on both sides of the Cretaceous/Tertiary boundary have been analyzed for their chemical and mineralogical content. The sediment consists of nannofossil ooze with variable amounts of clay. The boundary is marked by a color change associated with a nearly step-like decrease of the carbonate fraction. Paleomagnetic data and the drop of the carbonate content indicate that a strong reduction of the sedimentation rate occurred at the boundary and persisted for million of years. An iridium anomaly of 80 ng/cm**2, together with overabundances of Cr and Fe, are found in close coincidence with the planktonic crisis. These enrichments can be explained by the infall of =0.16 g/cm2 of Cl-like chondritic material. Co and Ni enrichments and a great quantity of Ni-rich magnetites are also observed in the basal Danian. These elements and minerals excepted, the composition of the insoluble fraction appears to be nearly unchanged across the boundary. Chemical and mineralogical observations support a cosmic origin for the Cretaceous/Tertiary event but do not reveal the presence of any significant impact ejecta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a new FPGA-based method for coincidence detection in positronemissiontomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kolmogorov approach to turbulence is applied to the Burgers turbulence in the stochastic adhesion model of large-scale structure formation. As the perturbative approach to this model is unreliable, here a new, non-perturbative approach, based on a suitable formulation of Kolmogorov's scaling laws, is proposed. This approach suggests that the power-law exponent of the matter density two-point correlation function is in the range 1–1.33, but it also suggests that the adhesion model neglects important aspects of the gravitational dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coincidence detection is important for functions as diverse as Hebbian learning, binaural localization, and visual attention. We show here that extremely precise coincidence detection is a natural consequence of the normal function of rectifying electrical synapses. Such synapses open to bidirectional current flow when presynaptic cells depolarize relative to their postsynaptic targets and remain open until well after completion of presynaptic spikes. When multiple input neurons fire simultaneously, the synaptic currents sum effectively and produce a large excitatory postsynaptic potential. However, when some inputs are delayed relative to the rest, their contributions are reduced because the early excitatory postsynaptic potential retards the opening of additional voltage-sensitive synapses, and the late synaptic currents are shunted by already opened junctions. These mechanisms account for the ability of the lateral giant neurons of crayfish to sum synchronous inputs, but not inputs separated by only 100 μsec. This coincidence detection enables crayfish to produce reflex escape responses only to very abrupt mechanical stimuli. In light of recent evidence that electrical synapses are common in the mammalian central nervous system, the mechanisms of coincidence detection described here may be widely used in many systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a possible clustering of a subset of observed ultra-high energy cosmic rays above ≃40 EeV (4 × 1019 eV) in pairs near the supergalactic plane was reported. We show that a confirmation of this effect would provide information on the origin and nature of these events and, in case of charged primaries, imply interesting constraints on the extragalactic magnetic field. Possible implications for the most common models of ultra-high energy cosmic ray production in the literature are discussed.