989 resultados para CELL ADOPTIVE IMMUNOTHERAPY
Resumo:
Cell surface mucins are complex glycoproteins expressed on the apical membrane surface of mucosal epithelial cells. In malignant epithelial cells they are thought to influence cell adhesion, and are clinical targets for tumor immunotherapy and serum tumor marker assays. We have compared expression of MUC1, MUC3, MUC4, MUC11, MUC12 and MUC13 mRNA in epithelial cancers and/or cell lines with non-malignant tissues. In non-malignant tissues, MUC3, 4, 11, 12 and 13 were expressed at highest levels in gastrointestinal tissues, whereas MUC1 was more widely distributed. Significant down-regulation of the MUC4, MUC12 and MUC13 genes was observed in colonic cancers compared with normal tissue, whereas MUC1 was upregulated. In rectal cancers, levels of all six mucin genes were not significantly different to those in normal rectal tissues. Both MUC1 and MUC4 were down-regulated in gastric cancers, whereas cancer and normal tissue levels were similar for MUC3, 11, 12 and 13. In esophageal cancers there was a general trend toward higher levels than in normal tissue for MUC1, 3, 12 and 13. In ovarian cancers MUC1 levels were very high, whereas only low levels of all other mucins were observed. We also report expression in renal cell carcinomas, bladder carcinomas and breast cancer cell lines. The reported expression profiles of the cell surface mucin gene family will help direct biological and clinical studies of these molecules in mucosal biology, and in malignant and inflammatory diseases of epithelial tissues.
Resumo:
Purpose: Persistent infection of cervical epithelium with high risk human papillomavirus (HPV) results in cervical intraepithelial neoplasia (CIN) from which squamous cancer of the cervix can arise. A study was undertaken to evaluate the safety and immunogenicity of an HPV 16 immunotherapeutic consisting of a mixture of HPV16 E6E7 fusion protein and ISCOMATRIX(TM) adjuvant (HPV16 Immunotherapeutic) for patients with CIN. Experimental design: Patients with CIN (n = 3 1) were recruited to a randomised blinded placebo controlled dose ranging study of immunotherapy. Results: Immunotherapy was well tolerated. Immunised subjects developed HPV16 E6E7 specific immunity. Antibody, delayed type hypersensitivity, in vitro cytokine release, and CD8 T cell responses to E6 and E7 proteins were each significantly greater in the immunised subjects than in placebo recipients. Loss of HPV16 DNA from the cervix was observed in some vaccine and placebo recipients. Conclusions : The HPV16 Immunotherapeutic comprising HPV16E6E7 fusion protein and ISCOMATRIX(TM) adjuvant is safe and induces vaccine antigen specific cell mediated immunity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The poor response to immunotherapy in patients with multiple myeloma (MM) indicates that a better understanding of any defects in the immune response in these patients is required before effective therapeutic strategies can be developed. Recently we reported that high potency (CMRF44(+)) dendritic cells (DC) in the peripheral blood of patients with MM failed to significantly up-regulate the expression of the B7 co-stimulatory molecules, CD80 and CD86, in response to an appropriate signal from soluble trimeric human CD40 ligand. This defect was caused by transforming growth factor beta(1) (TGFbeta(1)) and interleukin (IL)-10, produced by malignant plasma cells, and the defect was neutralized in vitro with anti-TGFbeta(1). As this defect could impact on immunotherapeutic strategies and may be a major cause of the failure of recent trials, it was important to identify a more clinically useful agent that could correct the defect in vivo. In this study of 59 MM patients, the relative and absolute numbers of blood DC were only significantly decreased in patients with stage III disease and CD80 up-regulation was reduced in both stage I and stage III. It was demonstrated that both IL-12 and interferon-gamma neutralized the failure to stimulate CD80 up-regulation by huCD40LT in vitro. IL-12 did not cause a change in the distribution of DC subsets that were predominantly myeloid (CD11c+ and CDw123-) suggesting that there would be a predominantly T-helper cell type response. The addition of IL-12 or interferon-gamma to future immunotherapy trials involving these patients should be considered.
Resumo:
The failure to mount effective immunity to virus variants in a previously virus-infected host is known as original antigenic sin. We have previously shown that prior immunity to a virus capsid protein inhibits induction by immunization of an IFN-gamma CD8(+) T cell response to an epitope linked to the capsid protein. We now demonstrate that capsid protein-primed CD4(+) T cells secrete IL-10 in response to capsid protein presented by dendritic cells, and deviate CD8+ T cells responding to a linked MHC class I-restricted epitope to reduce IFN-gamma production. Neutralizing IL-10 while delivering further linked epitope, either in vitro or in vivo, restores induction by immunization of an Ag-specific IFN-gamma response to the epitope. This finding demonstrates a strategy for overcoming inhibition of MHC class I epitopes upon immunization of a host already primed to Ag, which may facilitate immunotherapy for chronic viral infection or cancer.
Resumo:
The manipulation of dendritic cells (DCs) ex vivo to present tumor-associated antigens for the activation and expansion of tumor-specific cytotoxic T lymphocytes (CTLs) attempts to exploit these cells’ pivotal role in immunity. However, significant improvements are needed if this approach is to have wider clinical application. We optimized a gene delivery protocol via electroporation for cord blood (CB) CD34+ DCs using in vitro–transcribed (IVT) mRNA. We achieved > 90% transfection of DCs with IVT-enhanced green fluorescent protein mRNA with > 90% viability. Electroporation of IVT-mRNA up-regulated DC costimulatory molecules. DC processing and presentation of mRNA-encoded proteins, as major histocompatibility complex/peptide complexes, was established by CTL assays using transfected DCs as targets. Along with this, we also generated specific antileukemic CTLs using DCs electroporated with total RNA from the Nalm-6 leukemic cell line and an acute lymphocytic leukemia xenograft. This significant improvement in DC transfection represents an important step forward in the development of immunotherapy protocols for the treatment of malignancy.
Resumo:
Overcoming dendritic cell (DC) dysfunction is a prerequisite for successful active immunotherapy against breast cancer. CD40 ligand (CD40L), a key molecule in the interface between T-lymphocytes and DCs, seems to be instrumental in achieving that goal. Commenting on our data that CD40L protects circulating DCs from apoptosis induced by breast tumor products, Lenahan and Avigan highlighted the potential of CD40L for immunotherapy. We expand on that argument by pointing to additional findings that CD40L not only rescues genuine DCs but also functionally improves populations of immature antigen-presenting cells that fill the DC compartment in patients with breast cancer.
Resumo:
Ocular allergy is a significant and growing issue worldwide but for many patients, it is often not differentiated from systemic conditions, such as hay fever. Management of seasonal and perennial allergic conjunctivitis is often poor. Management is principally through avoidance measures (blocking or hygiene), nonpharmaceutical (such as artificial tears and cold compresses) and pharmaceutical (such as topical antihistamines and prophylactic mast cell stabilizers). Vernal and atopic keratoconjunctivitis are more severe and generally need treatment with NSAIDs, steroids and immunomodulators. Giant papillary conjunctivitis can be related to allergy but also is often contact lens related and in such cases can be managed by a period of abstinence and replacement of the lens or a change in lens material and/or design. Immunotherapy can be efficacious in severe, persistent cases of contact lens or allergic conjunctivitis.
Resumo:
Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy.
Resumo:
Cancer is amongst the leading causes of death worldwide and the number one cause in the developed world. Every year there are close to 10 million cancer related deaths and this corresponds to hundreds of millions of euro in health care costs and lost productivity, placing a substantial drain on the economy. The efficacy of traditional treatment modalities for cancer therapy, such as surgery, radiotherapy and chemotherapy has plateaued, and while they are undoubtedly effective at prolonging patient lifespan, there is a high rate of adverse side effects and fatal reoccurrence. Currently, there is a huge amount of interest in the areas of cancer immunosurveillance and cancer immuno-editing, which explain some of the complex interactions between the host immune system and cancer. If left unchecked, cancerous malignancies have the ability to generate an immunosuppressive microenvironment, effectively shielding themselves from elimination and promoting tumour growth and progression. To overcome this, the potential of the immune system must be harnessed and the work undertaken in this thesis sought to contribute to this goal. Focus was placed on using novel therapies, combining tumour ablation with immune-modulating antibodies to maximise tumour elimination in an immune dependent manner, to overcome immunosuppression and promote immune activation. Chapter 2 focuses on the use of ECT as a method of tumour ablation and its effects on the immune system. ECT proved to be effective at inhibiting the tumour growth both in vitro and in vivo, and conferred significant survival advantages in both small and large animal models. More importantly, ECT proved to cause tumour death in an immune dependent manner, displaying the hallmarks of Immunogenic Cell Death, increases in immune cell infiltration and generating tumour-specific immune responses. Chapter 3 focuses on combining ECT with immune checkpoint blockade inhibitors; anti- CTLA-4 and anti-PD-1. Both combinations proved to be effective at inhibiting both primary and distal tumour growth, indicating the generation of tumour specific immune responses and prolonged animal survival. In addition, the treatments caused increases in the levels of certain intra-tumoural immune cell subsets and modulated the cytokine profile of treated animals in a way that was favourable overall. Chapter 4 focuses on the combining ECT with an anti-iCOS agonist antibody, capable of causing immune co-stimulation. This novel combinational therapy proved to be the most effective by far, with a high cure rate achieved across a number of different in vivo tumour models. Total regression was seen in both primary and distal tumours, as well as spontaneous metastases, with the tumour specific immune response generated conferring total protection to animals on tumour rechallenge. Overall the data presented here adds further insight into the area of cancer immunotherapy with some of the novel combinational therapies demonstrating substantial clinic potential.
Resumo:
Although anti−cancer immuno−based combinatorial therapeutic approaches have shown promising results, efficient tumour eradication demands further intensification of anti−tumour immune response. With the emerging field of nanovaccinology, multi−walled carbon nanotubes (MWNTs) have manifested prominent potentials as tumour antigen nanocarriers. Nevertheless, the utilization of MWNTs in co−delivering antigen along with different types of immunoadjuvants to antigen presenting cells (APCs) has not been investigated yet. We hypothesized that harnessing MWNT for concurrent delivery of cytosine−phosphate−guanine oligodeoxynucleotide (CpG) and anti-CD40 Ig (αCD40), as immunoadjuvants, along with the model antigen ovalbumin (OVA) could potentiate immune response induced against OVA−expressing tumour cells. We initially investigated the effective method to co−deliver OVA and CpG using MWNT to the APC. Covalent conjugation of OVA and CpG prior to loading onto MWNTs markedly augmented the CpG−mediated adjuvanticity, as demonstrated by the significantly increased OVA−specific T cell responses in vitro and in C57BL/6 mice. αCD40 was then included as a second immunoadjuvant to further intensify the immune response. Immune response elicited in vitro and in vivo by OVA, CpG and αCD40 was significantly potentiated by their co−incorporation onto the MWNTs. Furthermore, MWNT remarkably improved the ability of co−loaded OVA, CpG and αCD40 in inhibiting the growth of OVA−expressing B16F10 melanoma cells in subcutaneous or lung pseudo−metastatic tumour models. Therefore, this study suggests that the utilization of MWNTs for the co−delivery of tumour−derived antigen, CpG and αCD40 could be a competent approach for efficient tumours eradication.
Resumo:
Les antigènes testiculaires du cancer sont des cibles idéales pour l’immunothérapie du cancer car ce sont des protéines immunogéniques dont l’expression est restreinte aux cellules germinales et au cancer. Le but de cette étude est d’évaluer le potentiel de MAGE-A11, un antigène testiculaire du cancer, comme cible pour développer un vaccin contre le cancer de la prostate. Pour ce faire, l’anticorps monoclonal 5C4 qui a la capacité de reconnaître la présence de MAGE-A11 dans les tissus fixés et inclus en paraffine a été produit. De plus, l’expression de MAGE-A11 a été analysée sur plusieurs lignées de cellules cancéreuses. Il a été démontré que MAGE-A11 est exprimé dans plusieurs types de cancers notamment dans le cancer du côlon et du cerveau. Finalement, nous avons identifié trois épitopes du CMH classe II HLA-DR1 dans la protéine MAGE-A11 confirmant ainsi l’immunogénicité de cet antigène et son potentiel comme cible pour l’immunothérapie du cancer.
Resumo:
Nuclear erythroid related factor-2 (NRF2) is known to promote cancer therapeutic detoxification and crosstalk with growth promoting pathways. HER2 receptor tyrosine kinase is frequently overexpressed in cancers leading to uncontrolled receptor activation and signaling. A combination of HER2 targeting monoclonal antibodies shows greater anticancer efficacy than the single targeting antibodies, however, its mechanism of action is largely unclear. Here we report novel actions of anti-HER2 drugs, Trastuzumab and Pertuzumab, involving NRF2. HER2 targeting by antibodies inhibited growth in association with persistent generation of reactive oxygen species (ROS), glutathione (GSH) depletion, reduction in NRF2 levels and inhibition of NRF2 function in ovarian cancer cell lines. The combination of antibodies produced more potent effects than single alone; downregulated NRF2 substrates by repressing the Antioxidant Response (AR) pathway with concomitant transcriptional inhibition of NRF2. We showed the antibody combination produced increased methylation at the NRF2 promoter consistent with repression of NRF2 antioxidant function, as HDAC and methylation inhibitors reversed such produced transcriptional effects. These findings demonstrate a novel mechanism and role for NRF2 in mediating the response of cancer cells to the combination of Trastuzumab and Pertuzumab and reinforce the importance of NRF2 in drug resistance and as a key anticancer target.
Resumo:
O cancro oral é uma neoplasia maligna relativamente frequente, sendo por isso responsável por uma taxa de mortalidade elevada. Em particular, o carcinoma espinocelular é o tipo histológico mais frequente das neoplasias malignas da cavidade oral, estando claramente associada a factores de risco como o tabaco, o consumo de álcool e a infecção pelo vírus do papiloma humano (HPV). Actualmente, no mundo ocidental, observa-se um aumento na incidência do cancro da língua que parece estar relacionado com infecções pelos vírus HPV. Tendo em conta os fenómenos associados à cancerização da mucosa oral e a progressão do mesmo, este trabalho tem como função a pesquisa de possíveis alternativas de tratamentos, nomeadamente a imunoterapia, com a utilização de anticorpos monoclonais, terapia de vacinas, terapia de transferência adoptiva de células T, entre outras, uma vez que nem sempre os tratamentos convencionais como a quimioterapia, radioterapia, ou tratamento cirúrgico se revelam completamente eficazes. Contudo, existe uma carência de protocolos definidos, sendo a imunoterapia ainda uma terapêutica a evoluir, por isso esta monografia pretende fazer uma revisão sobre o ‘’estado da arte’’ deste tema tão complexo, com base em literatura de vários autores ao longo desta última década. Este trabalho pretende mencionar novos alvos terapêuticos que permitem desenhar terapêuticas mais dirigidas e, eventualmente, com menos efeitos adversos. A utilização por exemplo do cetuximab (anti-EGFR), que na prática clínica é já uma realidade.
Resumo:
Background. Glioblastoma (GBM) is the most common primary tumor of central nervous system and it has a poor prognosis. Standard first line treatment, which includes surgery followed by adjuvant radio-chemotherapy,produces only modest benefits to survival. The interest for immunotherapy in this field derives from the development of new drugs and effective therapies as immune-check points inhibitors, adoptive T-cell approaches or dendritic cell (DC) based vaccines or a combinations of these. GBM is described as a typical “immune-deserted” cancer exhibiting a number of systemic and environmental immunosuppressive factors. Considering the role of microenvironment, and above all the lower tumor load and depletion of immunosuppressive cells in GBM, our hypothesis is that DC vaccine may induce an immune response. Main aims and study design. The main aim of this project is to study the role of immune system in GBM, including identification of potential prognostic and predictive markers of outcome and response to dendritic cell vaccine. Firstly, we performed a retrospective analysis on blood samples. Then, we analyzed the immuno-component in tissues samples of enrolled patients; and compared that with blood results. Then, the last part of the project is based on a prospective clinical trial on patients enrolled in DC-based vaccination produced at IRST Cell Factory and actually used for patients with melanoma and other tumors. The enrollment is still ongoing. Expected results. The project will i) develop an immune-panel of prognostic and predictive markers to help clinicians to improve the therapeutic strategy for GBM patients; ii) provide preliminary results on the effectiveness of immunotherapy on GBM patients.