920 resultados para Branch and bounds
Resumo:
In this work the solution of a class of capital investment problems is considered within the framework of mathematical programming. Upon the basis of the net present value criterion, the problems in question are mainly characterized by the fact that the cost of capital is defined as a non-decreasing function of the investment requirements. Capital rationing and some cases of technological dependence are also included, this approach leading to zero-one non-linear programming problems, for which specifically designed solution procedures supported by a general branch and bound development are presented. In the context of both this development and the relevant mathematical properties of the previously mentioned zero-one programs, a generalized zero-one model is also discussed. Finally,a variant of the scheme, connected with the search sequencing of optimal solutions, is presented as an alternative in which reduced storage limitations are encountered.
Resumo:
We propose the adaptive algorithm for solving a set of similar scheduling problems using learning technology. It is devised to combine the merits of an exact algorithm based on the mixed graph model and heuristics oriented on the real-world scheduling problems. The former may ensure high quality of the solution by means of an implicit exhausting enumeration of the feasible schedules. The latter may be developed for certain type of problems using their peculiarities. The main idea of the learning technology is to produce effective (in performance measure) and efficient (in computational time) heuristics by adapting local decisions for the scheduling problems under consideration. Adaptation is realized at the stage of learning while solving a set of sample scheduling problems using a branch-and-bound algorithm and structuring knowledge using pattern recognition apparatus.
Resumo:
Computing the similarity between two protein structures is a crucial task in molecular biology, and has been extensively investigated. Many protein structure comparison methods can be modeled as maximum weighted clique problems in specific k-partite graphs, referred here as alignment graphs. In this paper we present both a new integer programming formulation for solving such clique problems and a dedicated branch and bound algorithm for solving the maximum cardinality clique problem. Both approaches have been integrated in VAST, a software for aligning protein 3D structures largely used in the National Center for Biotechnology Information, an original clique solver which uses the well known Bron and Kerbosch algorithm (BK). Our computational results on real protein alignment instances show that our branch and bound algorithm is up to 116 times faster than BK.
Resumo:
The connectivity between the fish community of estuarine mangroves and that of freshwater habitats upstream remains poorly understood. In the Florida Everglades, mangrove-lined creeks link freshwater marshes to estuarine habitats downstream and may act as dry-season refuges for freshwater fishes. We examined seasonal dynamics in the fish community of ecotonal creeks in the southwestern region of Everglades National Park, specifically Rookery Branch and the North and watson rivers. Twelve low-order creeks were sampled via electrofishing, gill nets, and minnow traps during the wet season, transition period, and dry season in 2004-2005. Catches were greater in Rookery Branch than in the North and watson rivers, particularly during the transition period. Community composition varied seasonally in Rookery Branch, and to a greater extent for the larger species, reflecting a pulse of freshwater taxa into creeks as marshes upstream dried periodically. The pulse was short-lived, a later sample showed substantial decreases in freshwater fish numbers. No evidence of a similar influx was seen in the North and watson rivers, which drain shorter hydroperiod marshes and exhibit higher salinities. These results suggest that head-water creeks can serve as important dry-season refugia. Increased freshwater flow resulting from Everglades restoration may enhance this connectivity.
Resumo:
The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.
Resumo:
The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.
Resumo:
Cooperative communication has gained much interest due to its ability to exploit the broadcasting nature of the wireless medium to mitigate multipath fading. There has been considerable amount of research on how cooperative transmission can improve the performance of the network by focusing on the physical layer issues. During the past few years, the researchers have started to take into consideration cooperative transmission in routing and there has been a growing interest in designing and evaluating cooperative routing protocols. Most of the existing cooperative routing algorithms are designed to reduce the energy consumption; however, packet collision minimization using cooperative routing has not been addressed yet. This dissertation presents an optimization framework to minimize collision probability using cooperative routing in wireless sensor networks. More specifically, we develop a mathematical model and formulate the problem as a large-scale Mixed Integer Non-Linear Programming problem. We also propose a solution based on the branch and bound algorithm augmented with reducing the search space (branch and bound space reduction). The proposed strategy builds up the optimal routes from each source to the sink node by providing the best set of hops in each route, the best set of relays, and the optimal power allocation for the cooperative transmission links. To reduce the computational complexity, we propose two near optimal cooperative routing algorithms. In the first near optimal algorithm, we solve the problem by decoupling the optimal power allocation scheme from optimal route selection. Therefore, the problem is formulated by an Integer Non-Linear Programming, which is solved using a branch and bound space reduced method. In the second near optimal algorithm, the cooperative routing problem is solved by decoupling the transmission power and the relay node se- lection from the route selection. After solving the routing problems, the power allocation is applied in the selected route. Simulation results show the algorithms can significantly reduce the collision probability compared with existing cooperative routing schemes.
Resumo:
Psychology is a relatively new scientific branch and still lacks consistent methodological foundation to support its investigations. Given its immaturity, this science finds difficulties to delimit its ontological status, which spawnes several epistemological and methodological misconceptions. Given this, Psychology failed to demarcate precisely its object of study, leading, thus, the emergence of numerous conceptions about the psychic, which resulted in the fragmentation of this science. In its constitution, psychological science inherited a complex philosophical problem: the mind-body issue. Therefore, to define their status, Psychology must still face this problem, seeking to elucidate what is the mind, the body and how they relate. In light of the importance of this issue to a strict demarcation of psychological object, it was sought in this research, to investigate the mind-body problem in the Phenomenological Psychology of Edith Stein (1891-1942), phenomenologist philosopher who undertook efforts for a foundation of Psychology. For that, the discussion was subsidized from the contributions of the Philosophy of Mind and the support of the phenomenological method to the mind-body problem. From there, by a qualitative bibliographical methodology, it sought to examine the problem of research through the analysis of some philosophical-psychological philosopher's works, named: "Psychic Causality” (Kausalität Psychische, 1922) and “Introduction to Philosophy" (Einführung in die Philosophie, 1920). For this investigation, it was made, without prejudice to the discussion, a terminological equivalence between the terms mind and psyche, as the philosopher used the latter to refer to the object of Psychology. It sought to examine, therefore, how Stein conceived the psyche, the body and the relationship between them. Although it wasn't the focus of the investigation, it also took into account the spiritual dimension, as the philosopher conceived the human person as consisting of three dimensions: body, psyche and spirit. Given this, Stein highlighted the causal mechanism of the psyche, which is based on the variations of the vital force that emerges from the vital sphere. In relation to the corporeal dimension, the philosopher, following the analysis of Edmund Husserl (1859-1938), highlighted the dual aspect of the body, because it is at the same time something material (Körper) and also a linving body (Leib). On the face of it, it is understood that the psyche and the body are closely connected, so that it constitutes a dual-unit which is manifested in the Leib. This understanding of the problem psyche-mind/body provides a rich analysis of this issue, enabling the overcoming of some inconsistencies of the monistic and dualistic positions. Given this, it allows a strict elucidation of the Psychology object, contributing to the foundation of this science.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Dynamics of biomolecules over various spatial and time scales are essential for biological functions such as molecular recognition, catalysis and signaling. However, reconstruction of biomolecular dynamics from experimental observables requires the determination of a conformational probability distribution. Unfortunately, these distributions cannot be fully constrained by the limited information from experiments, making the problem an ill-posed one in the terminology of Hadamard. The ill-posed nature of the problem comes from the fact that it has no unique solution. Multiple or even an infinite number of solutions may exist. To avoid the ill-posed nature, the problem needs to be regularized by making assumptions, which inevitably introduce biases into the result.
Here, I present two continuous probability density function approaches to solve an important inverse problem called the RDC trigonometric moment problem. By focusing on interdomain orientations we reduced the problem to determination of a distribution on the 3D rotational space from residual dipolar couplings (RDCs). We derived an analytical equation that relates alignment tensors of adjacent domains, which serves as the foundation of the two methods. In the first approach, the ill-posed nature of the problem was avoided by introducing a continuous distribution model, which enjoys a smoothness assumption. To find the optimal solution for the distribution, we also designed an efficient branch-and-bound algorithm that exploits the mathematical structure of the analytical solutions. The algorithm is guaranteed to find the distribution that best satisfies the analytical relationship. We observed good performance of the method when tested under various levels of experimental noise and when applied to two protein systems. The second approach avoids the use of any model by employing maximum entropy principles. This 'model-free' approach delivers the least biased result which presents our state of knowledge. In this approach, the solution is an exponential function of Lagrange multipliers. To determine the multipliers, a convex objective function is constructed. Consequently, the maximum entropy solution can be found easily by gradient descent methods. Both algorithms can be applied to biomolecular RDC data in general, including data from RNA and DNA molecules.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Abstract not available
Resumo:
Les jeux de policiers et voleurs sont étudiés depuis une trentaine d’années en informatique et en mathématiques. Comme dans les jeux de poursuite en général, des poursuivants (les policiers) cherchent à capturer des évadés (les voleurs), cependant ici les joueurs agissent tour à tour et sont contraints de se déplacer sur une structure discrète. On suppose toujours que les joueurs connaissent les positions exactes de leurs opposants, autrement dit le jeu se déroule à information parfaite. La première définition d’un jeu de policiers-voleurs remonte à celle de Nowakowski et Winkler [39] et, indépendamment, Quilliot [46]. Cette première définition présente un jeu opposant un seul policier et un seul voleur avec des contraintes sur leurs vitesses de déplacement. Des extensions furent graduellement proposées telles que l’ajout de policiers et l’augmentation des vitesses de mouvement. En 2014, Bonato et MacGillivray [6] proposèrent une généralisation des jeux de policiers-voleurs pour permettre l’étude de ceux-ci dans leur globalité. Cependant, leur modèle ne couvre aucunement les jeux possédant des composantes stochastiques tels que ceux dans lesquels les voleurs peuvent bouger de manière aléatoire. Dans ce mémoire est donc présenté un nouveau modèle incluant des aspects stochastiques. En second lieu, on présente dans ce mémoire une application concrète de l’utilisation de ces jeux sous la forme d’une méthode de résolution d’un problème provenant de la théorie de la recherche. Alors que les jeux de policiers et voleurs utilisent l’hypothèse de l’information parfaite, les problèmes de recherches ne peuvent faire cette supposition. Il appert cependant que le jeu de policiers et voleurs peut être analysé comme une relaxation de contraintes d’un problème de recherche. Ce nouvel angle de vue est exploité pour la conception d’une borne supérieure sur la fonction objectif d’un problème de recherche pouvant être mise à contribution dans une méthode dite de branch and bound.
Resumo:
El panorama que se tiene es difícil de enfrentar en un mundo de pasos gigantescos en donde el avance de la tecnología se ve todos los días. Los problemas que presentan las unidades de información documental como presupuesto, personal y espacio físico, además de un usuario líder en el manejo de Internet y la cantidad de información que está disponible para todos en la red mundial, es un reto que debe desafiar el bibliotecólogo actual, en un mundo de cambios constantes y que son difíciles de alcanzar, pero que deben ser la meta de todo profesional en el área.El bibliotecólogo como un profesional destacado en el manejo de la información, debe estar al día en los últimos adelantos tecnológicos para manipular la inmensa cantidad de documentación que está en los centros en forma impresa, así como aquella que está en el mundo viajando por autopistas electrónicas y algunas veces sin control.Hoy todavía no se ha olvidado la impresión en papel, pero sí se está viviendo un cambio fuerte en la forma de enviar los productos y servicios que se deben brindar en una unidad de información, sea ésta de ente público o privado, especializada o general.El mundo nos pide un cambio y un acelerado proceso en nuestras mentes que asimile parte de este desarrollo globalizado que la sociedad está viviendo a pasos gigantescos.
Resumo:
Despite all intentions in the course of the Bologna Process and decades of investment into improving the social dimension, results in many national and international studies show that inequity remains stubbornly persistent, and that inequity based on socio-economic status, parental education, gender, country-of-origin, rural background and more continues to prevail in our Higher Education systems and at the labour market. While improvement has been shown, extrapolation of the gains of the last 40 years in the field show that it could take over 100 years for disadvantaged groups to catch up with their more advantaged peers, should the current rate of improvement be maintained. Many of the traditional approaches to improving equity have also necessitated large-scale public investments, in the form of direct support to underrepresented groups. In an age of austerity, many countries in Europe are finding it necessary to revisit and scale down these policies, so as to accommodate other priorities, such as balanced budgets or dealing with an aging population. An analysis of the current situation indicates that the time is ripe for disruptive innovations to mobilise the cause forward by leaps and bounds, instead of through incrementalist approaches. Despite the list of programmes in this analysis there is very little evidence as to the causal link between programmes, methodologies for their use and increases/improvements in equity in institutions. This creates a significant information gap for institutions and public authorities seeking for indicators to allocate limited resources to equity improving initiatives, without adequate evidence of effectiveness. The IDEAS project and this publication aims at addressing and improving this information gap. (DIPF/Orig.)