987 resultados para Basal Cell Adenoma
Resumo:
Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion but not with the prevention of cocaine-induced sensitization.
Resumo:
A pituitary tumor was diagnosed in a prepubertal 13-yr-old girl, who had elevated plasma LH (58 mIU/ml) and PRL (93 ng/ml) levels; decreased GH, ACTH, and FSH secretion; and diabetes insipidus. After surgery, plasma LH and PRL declined, but not to normal levels. Conventional external radiotherapy to the pituitary was immediately followed by a decrease in LH to prepubertal values (0.7 mIU/ml), while PRL levels became normal only after a long course of bromocriptine therapy. The pituitary tumor was composed of two distinct cell types: small polygonal cells, which were PRL positive by immunohistochemistry, and clusters of pleomorphic large frequently mitotic polynucleated cells, which were LH positive, some of them also being positive for the alpha-subunit or beta LH but not for beta FSH. Four years after surgery and radiotherapy, the patient deteriorated neurologically. Computed tomographic scan showed widespread frontal and periventricular tumor, which had the histological features of a poorly differentiated carcinoma. No PRL, LH, or alpha- or beta-subunits were detectable on immunocytochemistry. While the PRL-positive cells of the pituitary tumor displayed the histological and clinical features of PRL adenomas, the morphological characteristics of LH cells and the sharp decline of plasma LH levels after radiotherapy were suggestive of malignant transformation. In this context, the later brain tumor could have been the result of subependymal spread of the pituitary tumor after it lost its hormone-secreting capacity.
Resumo:
Water balance is achieved through the ability of the kidney to control water reabsorption in the connecting tubule and the collecting duct. In a mouse cortical collecting duct cell line (mCCD(c11)), physiological concentrations of arginine vasopressin increased both electrogenic, amiloride-sensitive, epithelial sodium channel (ENaC)-mediated sodium transport measured by the short-circuit current (Isc) method and water flow (Jv apical to basal) measured by gravimetry with similar activation coefficient K(1/2) (6 and 12 pM, respectively). Jv increased linearly according to the osmotic gradient across the monolayer. A small but highly significant Jv was also measured under isoosmotic conditions. To test the coupling between sodium reabsorption and water flow, mCCD(c11) cells were treated for 24 h under isoosmotic condition with either diluent, amiloride, vasopressin or vasopressin and amiloride. Isc, Jv, and net chemical sodium fluxes were measured across the same monolayers. Around 30% of baseline and 50% of vasopressin-induced water flow is coupled to an amiloride-sensitive, ENaC-mediated, electrogenic sodium transport, whereas the remaining flow is coupled to an amiloride-insensitive, nonelectrogenic sodium transport mediated by an unknown electroneutral transporter. The mCCD(c11) cell line is a first example of a mammalian tight epithelium allowing quantitative study of the coupling between sodium and water transport. Our data are consistent with the 'near isoosmotic' fluid transport model.
Resumo:
Initiation and progression of most colorectal cancers (CRCs) are driven by hyper-activation of the canonical Wnt/ß-catenin/TCF signaling pathway. However, a basal level of activation of this pathway is necessary for intestinal cell homeostasis; thus only CRC-specific effectors of this pathway could be exploited as potential clinical targets. PROX1 is an evolutionary conserved transcription factor with multiple roles in several tissues in embryogenesis, and increasing relevance in cancer. PROX1 is a colon cancer-specific Wnt target in the intestine, thus it might represent a therapeutic target. The role of PROX1 in promoting the transition from early to highly-dysplastic adenoma was previously described [1], Importantly, tumor metastasis is a leading cause of cancer-related mortality. Frequently, micrometastases are already present in patients at the time of diagnosis, therefore better understanding of the mechanisms regulating growth of macrometastatic lesions is important for the development of novel treatment approaches. In this study we showed that PROX1 is expressed in colon cancer stem cell and promotes the outgrowth of metastatic lesions. Firstly, we analyzed the expression of PROX1 in advanced CRCs and their metastases. We found that PROX1 over-expression is a feature of microsatellite stable tumors (~85% of microsatellite stable (MSS) CRCs), which generally have worse prognosis in comparison to microsatellite unstable CRCs. Analysis of primary CRCs and corresponding metastatic lesions showed that PROX1 expression is conserved, or increased in metastases. Further bioinformatics analysis of tumor and metastases gene expression profiles showed that PROX1 is co- expressed with stem cell and progenitor markers. Moreover, in inducible ApcmLgr5-EGFP-lres-CreERT2 model, Prox1+ cells marked a sub-population of Lgr5+ stem cells and subsequent transient amplifying cell population. Orthotopic model of CRC and lung colonization assays in mice demonstrated that PROX1 promotes tumor cell outgrowth in metastatic lesions, while it has no effect on primary tumor growth, invasion, and survival in circulation or cell extravasation. In vitro, PROX1 expressing tumor cells demonstrated strongly increased capacity to form spheroids, and increased survival and proliferation under hypoxic or nutrient-deprivation conditions. By monitoring cellular respiration under these conditions, we found that PROX1 expressing cells exhibit a better metabolic adaptation to changes in fuel source. Autophagy inhibitors, prevented growth both in vitro and in vivo of PROX1 expressing cells. Importantly, conditional inactivation of PROX1 after the establishment of metastases prevented further growth of macroscopic lesions resulting in stable disease. In summary, we identified a novel mechanism underlying the ability of metastatic colon cancer stem and progenitor cells to survive and grow in target organs through metabolic adaptation. Our results establish PROX1 as a key factor of CRC metastatic disease where it promotes survival of metastatic colon cancer stem-like cells, through their metabolic adaptation in sub-optimal microenvironments - L'initiation et la progression de la plupart des cancers colorectaux (CRC) sont entraînées par une hyper-activation de la voie métabolique Wnt/ß- caténine/TCF. Toutefois, un niveau d'activation minimal de Wnt est nécessaire pour l'homéostasie des cellules intestinales ; ainsi seuls des effecteurs spécifiques du CRC- de cette voie pourraient être exploités comme des cibles cliniques potentielles. PROX1 est un facteur de transcription évolutif conservé avec de multiples rôles dans plusieurs tissus durant l'embryogenèse et une pertinence croissante dans le cancer. PROX1 est une cible Wnt spécifique dans le cancer de l'intestin, donc il pourrait représenter une cible thérapeutique. Le rôle de PROX1 durant l'évolution de la maladie d'un stade précoce jusqu'à l'adénome hautement dysplasique a été décrit précédemment. Surtout, la métastase des tumeurs est une cause majeure de mortalité liée au cancer. Souvent, les micro-métastases sont déjà présentes chez les patients au moment du diagnostic, c'est pourquoi une meilleure compréhension des mécanismes régulant la croissance des lésions macrométastatiques est importante pour le développement de nouvelles approches thérapeutiques. Dans cette étude, nous avons prouvé que PROX1 est exprimé dans les cellules souches du cancer du côlon et favorise l'apparition de lésions métastatiques. Nous avons d'abord analysé l'expression de PROX1 dans des CRC avancés ainsi que dans leurs métastases. Nous avons constaté que la surexpression de PROX1 est une caractéristique des tumeurs stables microsatellites (~85% du MSS CRC), qui ont généralement un pronostic défavorable par rapport aux microsatellites CRC instables. L'analyse des CRC primaires et de leurs métastases liées a montré que l'expression de PROX1 est conservée, voire augmentée dans les métastases. A l'aide d'une base de données de tumeurs et métastases, nous avons observé une co- régulation de PROX1 entre cellules souches et marqueurs de progéniteurs mais pas avec des cellules différenciées. De plus, en utilisant un modèle Apcm Lgr5-EGFP-IRES-CreERT2 inductible, les cellules Prox1+ ont marqué une sous-population de cellules LGR& capable de produire une lignée. Un modèle orthotopique de cancer colorectal et des essais de colonisation du poumon chez la souris ont démontré que PROX1 favorise l'excroissance des cellules tumorales dans les lésions métastatiques, alors qu'il n'a aucun effet sur la croissance tumorale primaire, l'invasion ou une extravasation des cellules. In vitro, les cellules tumorales exprimant PROX1 ont démontré une forte augmentation de leur capacité à former des sphéroïdes, ainsi qu'une augmentation de la survie et de la prolifération dans des conditions hypoxiques ou lors de privation de nutriments. En contrôlant la respiration cellulaire dans ces conditions, nous avons constaté que les cellules exprimant PROX1 présentent une meilleure adaptation métabolique à l'évolution des sources de carburant. Des inhibiteurs de l'autophagie, suggérant une approche thérapeutique potentielle, ont tué à la fois in vitro et in vivo les cellules exprimant PROX1. Surtout, l'inactivation conditionnelle de PROX1 après l'apparition de métastases a empêché la croissance des lésions macroscopiques résultant en une maladie stable. En résumé, nous avons identifié un nouveau mécanisme mettant en évidence la capacité des cellules souches du cancer du côlon métastatique à survivre et à se développer dans les organes cibles grâce à l'adaptation métabolique. Nos résultats définissent PROX1 comme un facteur clé du cancer colorectal métastatique en favorisant la survie des cellules souches métastatiques apparentées au cancer du colon grâce à leur adaptation métabolique aux microenvironnements défavorables.
Resumo:
In addition to the ubiquitous apical-basal polarity, epithelial cells are often polarized within the plane of the tissue - the phenomenon known as planar cell polarity (PCP). In Drosophila, manifestations of PCP are visible in the eye, wing, and cuticle. Several components of the PCP signaling have been characterized in flies and vertebrates, including the heterotrimeric Go protein. However, Go signaling partners in PCP remain largely unknown. Using a genetic screen we uncover Kermit, previously implicated in G protein and PCP signaling, as a novel binding partner of Go. Through pull-down and genetic interaction studies, we find that Kermit interacts with Go and another PCP component Vang, known to undergo intracellular relocalization during PCP establishment. We further demonstrate that the activity of Kermit in PCP differentially relies on the motor proteins: the microtubule-based dynein and kinesin motors and the actin-based myosin VI. Our results place Kermit as a potential transducer of Go, linking Vang with motor proteins for its delivery to dedicated cellular compartments during PCP establishment.
Resumo:
Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type.
Resumo:
A new culture model was developed to study the role of proliferation and apoptosis in the etiology of keloids. Fibroblasts were isolated from the superficial, central, and basal regions of six different keloid lesions by using Dulbecco's Modified Eagle Medium containing 10% fetal calf serum as a culture medium. The growth behavior of each fibroblast fraction was examined in short-term and long-term cultures, and the percentage of apoptotic cells was assessed by in situ end labeling of fragmented DNA. The fibroblasts obtained from the superficial and basal regions of keloid tissue showed population doubling times and saturation densities that were similar to those of age-matched normal fibroblasts. In contrast, the fibroblasts from the center of the keloid lesions showed significantly reduced doubling times (25.9 +/- 6.3 hours versus 43.5 +/- 6.3 hours for normal fibroblasts) and reached higher cell densities. In long-term culture, central keloid fibroblasts formed a stratified three-dimensional structure, contracted the self-produced extracellular matrix, and gave rise to nodular cell aggregates, mimicking the formation of keloid tissue. Apoptotic cells were detected in both normal and keloid-derived fibroblasts, but their numbers were twofold higher in normal cells compared with all keloid fibroblasts. To examine whether apoptosis mediates the therapeutic effect of ionizing radiation on keloids, the cells were exposed to gamma rays at a dose of 8 Gy. Under these conditions, a twofold increase in the population of apoptotic cells was detected. These results indicate that the balance between proliferation and apoptosis is impaired in keloid fibroblasts, which could be responsible for the formation of keloid tumors. The results also suggest that keloids contain at least two different fibroblast fractions that vary in growth behavior and extracellular matrix metabolism.
Resumo:
Retinitis pigmentosa (RP) is a retinal degenerative disease characterized by the progressive loss of photoreceptors. We have previously demonstrated that RP can be caused by recessive mutations in the human FAM161A gene, encoding a protein with unknown function that contains a conserved region shared only with a distant paralog, FAM161B. In this study, we show that FAM161A localizes at the base of the photoreceptor connecting cilium in human, mouse and rat. Furthermore, it is also present at the ciliary basal body in ciliated mammalian cells, both in native conditions and upon the expression of recombinant tagged proteins. Yeast two-hybrid analysis of binary interactions between FAM161A and an array of ciliary and ciliopathy-associated proteins reveals direct interaction with lebercilin, CEP290, OFD1 and SDCCAG8, all involved in hereditary retinal degeneration. These interactions are mediated by the C-terminal moiety of FAM161A, as demonstrated by pull-down experiments in cultured cell lines and in bovine retinal extracts. As other ciliary proteins, FAM161A can also interact with the microtubules and organize itself into microtubule-dependent intracellular networks. Moreover, small interfering RNA-mediated depletion of FAM161A transcripts in cultured cells causes the reduction in assembled primary cilia. Taken together, these data indicate that FAM161A-associated RP can be considered as a novel retinal ciliopathy and that its molecular pathogenesis may be related to other ciliopathies.
Resumo:
Aim: 5-fluoro-2'-deoxyuridine (FdUrd) depletes the endogenous 5'-deoxythymidine triphosphate (dTTP) pool. We hypothesized whether uptake of exogenous dThd analogues could be favoured through a feedback enhanced salvage pathway and studied the FdUrd effect on cellular uptake of 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) and 5-125I-iodo-2'-deoxyuridine (125I-IdUrd) in different cancer cell lines in parallel. Methods: Cell uptake of 18F-FLT and 125I-IdUrd was studied in 2 human breast, 2 colon cancer and 2 glioblastoma lines. Cells were incubated with/without 1 µmol/l FdUrd for 1 h and, after washing, with 1.2 MBq 18F-FLT or 125I-IdUrd for 0.3 to 2 h. Cell bound 18F-FLT and 125I-IdUrd was counted and expressed in % incubated activity (%IA). Kinetics of 18F-FLT cell uptake and release were studied with/without FdUrd modulation. 2'-3H-methyl-fluorothymidine (2'-3H-FLT) uptake with/without FdUrd pretreatment was tested on U87 spheroids and monolayer cells. Results: Basal uptake at 2 h of 18F-FLT and 125I-IdUrd was in the range of 0.8-1.0 and 0.4-0.6 Bq/cell, respectively. FdUrd pretreatment enhanced 18F-FLT and 125I-IdUrd uptake 1.2-2.1 and 1.7-4.4 fold, respectively, while co-incubation with excess thymidine abrogated all 18F-FLT uptake. FdUrd enhanced 18F-FLT cellular inflow in 2 breast cancer lines by factors of 1.8 and 1.6, respectively, while outflow persisted at a slightly lower rate. 2'-3H-FLT basal uptake was very low while uptake increase after FdUrd was similar in U87 monolayer cells and spheroids. Conclusions: Basal uptake of 18F-FLT was frequently higher than that of 125I-IdUrd but FdUrd induced uptake enhancement was stronger for 125I-IdUrd in five of six cell lines. 18F-FLT outflow from cells might be an explanation for the observed difference with 125I-IdUrd.
Resumo:
We have investigated in vitro, the effects of glucagon-like peptide-1-(7-36) amide (GLP-1-(7-36) amide), oxyntomodulin and glucagon on two rabbit parietal cell-enriched fractions (F3, F3n), with parietal cell contents of 60% and 88%, respectively. Histamine (10(-5) M) stimulated [14C]aminopyrine accumulation to an amount of 850% in excess of the basal level, whereas GLP-1-(7-36) amide (10(-7) M) and oxyntomodulin (10(-6) M) induced increases of 50% and 30%, respectively. With a histamine concentration of 10(-6) M, [14C]aminopyrine accumulation was stimulated to 498% in excess of the basal level; GLP-1-(7-36) amide (10(-7) M) and oxyntomodulin (10(-7) M) induced increases of 18% and 15%, respectively. With these parameters, oxyntomodulin[19-37] and glucagon were without effect. Specific binding of [125I]GLP-1-(7-36) amide to parietal cell plasma membranes was inhibited dose-dependently by GLP-1-(7-36) amide, oxyntomodulin and glucagon with inhibitory concentrations of 0.25 nM, 65 nM and 800 nM, respectively. No specific binding of [125I]oxyntomodulin or [125I]glucagon was detectable. GLP-1-(7-36) amide receptor mRNA was only detected in parietal cell-enriched fractions. GLP-1-(7-36) amide, oxyntomodulin and glucagon stimulated parietal cell cAMP production to similar maximal levels with median values close to 0.28 nM, 10.5 nM and 331.7 nM, whereas oxyntomodulin[19-37] had no effect. The maximal cAMP production induced by GLP-1-(7-36) amide, oxyntomodulin or glucagon was additive to that induced by histamine.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Plants have acquired the ability for organized multicellular development independent from animals. Because of this, they represent an independent example in nature for the development of coordinated, complex cell polarity from the simple polarity found in unicellular eukaryotes. Plants display a striking array of polarized cell types, with different axes of polarity being defined in one cell. The most investigated and best understood aspect of plant polarity is the apical-basal polarity of the PIN family of auxin efflux facilitators, which are of crucial importance for the organization of the entire plant body. Striking differences exist between the PAR-polarity modules known in animals and the ways PINs polarize plant cells. Nonetheless, a common regulatory logic probably applies to all polarizing eukaryotic cells, which includes self-reinforcing, positive feedback loops, intricate interactions between membrane-attached proteins, lipid signatures, and the targeting of transmembrane proteins to the correct domains of the plasma membrane.
Resumo:
How the apical-basal axis of polarity is established in embryogenesis is still a mystery in plant development. This axis appeared specifically compromised by mutations in the Arabidopsis GNOM gene. Surprisingly, GNOM encodes an ARF guanine-nucleotide exchange factor (ARF-GEF) that regulates the formation of vesicles in membrane trafficking. In-depth functional analysis of GNOM and its closest relative, GNOM-LIKE 1 (GNL1), has provided a mechanistic explanation for the development-specific role of a seemingly mundane trafficking regulator. The current model proposes that GNOM is specifically involved in the endosomal recycling of the auxin-efflux carrier PIN1 to the basal plasma membrane in provascular cells, which in turn is required for the accumulation of the plant hormone auxin at the future root pole through polar auxin transport. Thus, the analysis of GNOM highlights the importance of cell-biological processes for a mechanistic understanding of development.
Resumo:
Expression of laminin-5 alpha3, beta3 and gamma2 protein subunits was investigated in colorectal adenocarcinomas using immunostaining and confocal microscopy. The laminin-5 heterotrimer was found in basement membranes and as extracellular deposits in tumor stroma. In contrast to the alpha3 subunit, which was under-expressed, the gamma2 and beta3 subunits were detected in the cytoplasm of carcinoma cells dissociating (budding) from neoplastic tubules, suggestive of focal alterations in laminin-5 assembly and secretion. Laminin-5 gamma2 or beta3 subunit-reactive budding carcinoma cells expressed cytokeratins but not vimentin; they did not proliferate and were not apoptotic. Furthermore, expression of laminin-5 gamma2 and beta3 subunits in budding cells was associated with focal under-expression of the E-cadherin-beta-catenin complex. Results from xenograft experiments showed that budding activity in colorectal adenocarcinomas could be suppressed when these tumors grew at ectopic s.c. sites in nude mice. In vitro, cultured colon carcinoma cells, but not adenoma-derived tumor cells, shared the laminin-5 phenotype expressed by carcinoma cells in vivo. Using colon carcinoma cell lines implanted orthotopically and invading the cecum of nude mice, the laminin-5-associated budding was restored, indicating that this phenotype is not only determined by tumor cell properties but also dependent on the tissue micro-environment. Our results indicate that both laminin-5 alpha3 subunit expression and cell-cell cohesiveness are altered in budding carcinoma cells, which we consider to be actively invading. We propose that the local tissue micro-environment contributes to these events.
Resumo:
Ability to induce protein expression at will in a cell is a powerful strategy used by scientists to better understand the function of a protein of interest. Various inducible systems have been designed in eukaryotic cells to achieve this goal. Most of them rely on two distinct vectors, one encoding a protein that can regulate transcription by binding a compound X, and one hosting the cDNA encoding the protein of interest placed downstream of promoter sequences that can bind the protein regulated by compound X (e.g., tetracycline, ecdysone). The commercially available systems are not designed to allow cell- or tissue-specific regulated expression. Additionally, although these systems can be used to generate stable clones that can be induced to express a given protein, extensive screening is often required to eliminate the clones that display poor induction or high basal levels. In the present report, we aimed to design a pancreatic beta cell-specific tetracycline-inducible system. Since the classical two-vector based tetracycline-inducible system proved to be unsatisfactory in our hands, a single vector was eventually designed that allowed tight beta cell-specific tetracycline induction in unselected cell populations.
Resumo:
The PAR-domain basic leucine zipper (PAR bZip) transcription factors DBP, TEF, and HLF accumulate in a highly circadian manner in several peripheral tissues, including liver and kidney. Mice devoid of all three of these proteins are born at expected Mendelian ratios, but are epilepsy prone, age at an accelerated rate, and die prematurely. In the hope of identifying PAR bZip target genes whose altered expression might contribute to the high morbidity and mortality of PAR bZip triple knockout mice, we compared the liver and kidney transcriptomes of these animals to those of wild-type or heterozygous mutant mice. These experiments revealed that PAR bZip proteins control the expression of many enzymes and regulators involved in detoxification and drug metabolism, such as cytochrome P450 enzymes, carboxylesterases, and constitutive androstane receptor (CAR). Indeed, PAR bZip triple knockout mice are hypersensitive to xenobiotic compounds, and the deficiency in detoxification may contribute to their early aging.