986 resultados para BLUE-SHIFT
Resumo:
Life history characteristics were used to determine the stock structure of the polynemid Eleutheronema tetradactylum across northern Australia. Growth, estimated from back-calculated length-at-age from sagittal otoliths, and length at sex change were estimated from samples collected from 12 different locations across western, northern and eastern Australia between 2007 and 2009. Comparison of back-calculated length-at-age, growth and length at sex change between locations revealed significant variation in the life-history characteristics of E. tetradactylum across northern Australia, with significant differences detected in 43 of 45 location comparisons. Differences in otolith size relative to fish length also existed amongst locations. No differences in other morphometric relationships were detected. The results of this study provide evidence for a high degree of spatial population subdivision for E. tetradactylum across northern Australia, the finding of which has implications for E. tetradactylum fisheries throughout its range, and provides a biological basis for spatial management of the species in Australia. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
M r=670.02, monoclinic, C2/c, a= 31.003(4), b=11.037(2), c=21.183(3)A, fl= 143.7 (1) °, V= 4291.2/k 3, D,n = 2.06, D x = 2.07Mgm -3, Z=8, MoKa, 2=0.7107/k, /~=7.45 mm -1, F(000) = 2560, T= 293 K, R = 0.061 for 1697 observed reflections. The bromphenol blue molecule consists essentially of three planar groupings: the sulfonphthalein ring system and two dibromophenol rings attached to the tetrahedral C atom of the five-membered ring of the sulfonphthalein system. The dibromophenol rings are inclined with resPect to each other at 73 ° whereas they make angles of 85 and 68 ° with respect to the sulfonphthalein system. The molecules aggregate into helical columns with the non-polar regions of the molecules in the interior and the polar regions on the surface. The columns are held together by a network of hydrogen bonds.
Resumo:
A serological survey of cattle from throughout Queensland and sheep from cattle/sheep interface areas was conducted to determine the distribution and prevalence of antibodies to Bluetongue virus serotypes. This information allowed preliminary designation of arbovirusfree zones and identification of livestock populations at greatest risk to introduction of exotic Bluetongue viruses. Throughout the state antibodies were detected to only serotypes I and 21. In cattle prevalence decreased with increasing distance from the coast ringing from 73% in the far north to less than I% in the southwest. In sheep, prevalence of bluetongue antibodies in the major cattle/sheep interface areas in the north-west and central Queensland ranged from O% to 5%. A system of strategically placed sentinel herds of 10 young serologically negative cattle was established across northern Australia to monitor the distribution and seasonality of bluetongue viruses. Initially 23 herds were located in Queensland, 4 in Northern Territory and 2 in Western Australia but by the completion of the project the number of herds in Queensland had been reduced to 12. No bluetongue virus activity was detected in Western Australia or Northern Territory herds throughout the project although testing of one herd in Northern Territory with a history of bluetongue activity was not done after June 1991. In Queensland, activity to bluetongue serotypes I and 21 was detected in all years of the project. Transmissions occurred predominantly in the period April to September and were more widespread in wetter years' The pathogenic bluetongue setotypes previously isolated from the Northern Territory have not spread to adjoining States.
Resumo:
Diabetic foot ulceration poses a heavy burden on the patient and the healthcare system, but prevention thereof receives little attention. For every euro spent on ulcer prevention, ten are spent on ulcer healing, and for every randomized controlled trial conducted on prevention, ten are conducted on healing. In this article, we argue that a shift in priorities is needed. For the prevention of a first foot ulcer, we need more insight into the effect of interventions and practices already applied globally in many settings. This requires systematic recording of interventions and outcomes, and well-designed randomized controlled trials that include analysis of cost-effectiveness. After healing of a foot ulcer, the risk of recurrence is high. For the prevention of a recurrent foot ulcer, home monitoring of foot temperature, pressure-relieving therapeutic footwear, and certain surgical interventions prove to be effective. The median effect size found in a total of 23 studies on these interventions is large, over 60%, and further increases when patients are adherent to treatment. These interventions should be investigated for efficacy as a state-of-the-art integrated foot care approach, where attempts are made to assure treatment adherence. Effect sizes of 75-80% may be expected. If such state-of-the-art integrated foot care is implemented, the majority of problems with foot ulcer recurrence in diabetes can be resolved. It is therefore time to act and to set a new target in diabetic foot care. This target is to reduce foot ulcer incidence with at least 75%.
Resumo:
Spatial and temporal variation in the abundance of species can often be ascribed to spatial and temporal variation in the surrounding environment. Knowledge of how biotic and abiotic factors operate over different spatial and temporal scales in determining distribution, abundance, and structure of populations lies at the heart of ecology. The major part of the current ecological theory stems from studies carried out in central parts of the distributional range of species, whereas knowledge of how marginal populations function is inadequate. Understanding how marginal populations, living at the edge of their range, function is however in a key position to advance ecology and evolutionary biology as scientific disciplines. My thesis focuses on the factors affecting dynamics of marginal populations of blue mussels (Mytilus edulis) living close to their tolerance limits with regard to salinity. The thesis aims to highlight the dynamics at the edge of the range and contrast these with dynamics in more central parts of the range in order to understand the potential interplay between the central and the marginal part in the focal system. The objectives of the thesis are approached by studies on: (1) factors affecting regional patterns of the species, (2) long-term temporal dynamics of the focal species spaced along a regional salinity gradient, (3) selective predation by increasing populations of roach (Rutilus rutilus) when feeding on their main food item, the blue mussel, (4) the primary and secondary effects of local wave exposure gradients and (5) the role of small-scale habitat heterogeneity as determinants of large-scale pattern. The thesis shows that populations of blue mussels are largely determined by large scale changes in sea water salinity, affecting mainly recruitment success and longevity of local populations. In opposite to the traditional view, the thesis strongly indicate that vertebrate predators strongly affect abundance and size structure of blue mussel populations, and that the role of these predators increases towards the margin where populations are increasingly top-down controlled. The thesis also indicates that the positive role of biogenic habitat modifiers increases towards the marginal areas, where populations of blue mussels are largely recruitment limited. Finally, the thesis shows that local blue mussel populations are strongly dependent on high water turbulence, and therefore, dense populations are constrained to offshore habitats. Finally, the thesis suggests that ongoing sedimentation of rocky shores is detrimental for the species, affecting recruitment success and post-recruit survival, pushing stable mussel beds towards offshore areas. Ongoing large scale changes in the Baltic Sea, especially dilution processes with attendant effects, are predicted to substantially contract the distributional range of the mussel, but also affect more central populations. The thesis shows that in order to understand the functioning of marginal populations, research should (1) strive for multi-scale approaches in order to link ecosystem patterns with ecosystem processes, and (2) challenge the prevailing tenets that origin from research carried out in central areas that may not be valid at the edge.
Resumo:
The binding sites in hen egg-white lysozyme for neutral bromophenol red (BPR) and ionized bromophenol blue (BPB) have been characterized at 2 Å resolution. In either case, the dye-bound enzyme is active against the polysaccharide, but not against the cell wall. Both binding sites are outside, but close to, the hexasaccharide binding cleft in the enzyme. The binding site of BPR made up of Arg5, Lys33, Phe34, Asn37, Phe38, Ala122, Trp123 and possibly Arg125, is dose to subsite F while that of BPB made up of Tyr20, Arg21, Asn93, Lys96, Lys97 and Ser100, is close to subsites A and B. The binding sites of the neutral dye and the ionized dye are thus spatially far apart. The peptide component of the bacterial cell wall probably interacts with these cells during enzyme action. Such interactions are perhaps necessary for appropriately positioning the enzyme molecule on the bacterial cell wall.
Resumo:
The benzylic methylene protons in a large number of benzyloxycarbonyl alpha-aminoisobutyric acid (Z-Aib) containing peptides, show chemical shift nonequivalence. The magnitude of the geminal nonequivalence is correlated with the involvement of the urethane carbonyl group, in an intramolecular hydrogen bond. Studies of the model compounds Z-Aib-Aib-Ala-NHMe, and Z-Aib-Aib-Aib-Pro-OMe clearly establish the presence of intramolecular hydrogen bonds, involving the urethane CO group. In both compounds marked anisochrony of the benzylic methylene protons is demonstrated. In Z-Aib-Aib-Pro-OMe, where a 4 leads to 1 hydrogen bonded beta-turn is not possible, the benzylic-CH2-protons appear as a singlet in CDCl3 and have a very small chemical shift difference in (CD3)2SO. The observation of such nonequivalence is of value in establishing whether the amino terminal Aib-Pro beta-turn is retained in large peptide-fragments of alamethicin.
Resumo:
The annual cycle of rainfall over the Korean Peninsula is marked by two peaks: one during July and the other during August. Since the mid-1970s, the maximum rainfall over the Korean Peninsula has shifted from July to August. This shift in rainfall peak was caused by a significant increase of August rainfall after the mid-1970s. The basic reason for this shift has been traced to a change in teleconnection between El Nino-Southern Oscillation (ENSO) and August rainfall. The relationship between August rainfall over Korea and ENSO changed from 1954-1975 (PI) to 1976-2002 (PII). The variability of August rainfall was significantly associated with sea surface temperature (SST) variation over the eastern equatorial Pacific during PI, but this relationship is absent during the PII period. In El Nino years during PI, low-level westerly and southerly wind anomalies are dominant around the East China Sea, which relates to strong August rainfall. In La Nina years during PI, easterly and northerly wind anomalies are dominant. During the PII period, however, westerly and southerly wind anomalies around the East China Sea were responsible for the high August rainfall over the East Asian region, even though La Nina SST conditions were in effect over the eastern Pacific.
Resumo:
A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.
Resumo:
Objective: We aimed to assess the impact of task demands and individual characteristics on threat detection in baggage screeners. Background: Airport security staff work under time constraints to ensure optimal threat detection. Understanding the impact of individual characteristics and task demands on performance is vital to ensure accurate threat detection. Method: We examined threat detection in baggage screeners as a function of event rate (i.e., number of bags per minute) and time on task across 4 months. We measured performance in terms of the accuracy of detection of Fictitious Threat Items (FTIs) randomly superimposed on X-ray images of real passenger bags. Results: Analyses of the percentage of correct FTI identifications (hits) show that longer shifts with high baggage throughput result in worse threat detection. Importantly, these significant performance decrements emerge within the first 10 min of these busy screening shifts only. Conclusion: Longer shift lengths, especially when combined with high baggage throughput, increase the likelihood that threats go undetected. Application: Shorter shift rotations, although perhaps difficult to implement during busy screening periods, would ensure more consistently high vigilance in baggage screeners and, therefore, optimal threat detection and passenger safety.
Resumo:
This communication highlights unstable blue-green emitting Cu doped ZnSe nanocrystals stabilized by diluting the surface Se with a calculated amount of S.