890 resultados para Artificial organs
Resumo:
Aspects of the Nigerian fishing industry are outlined to explain the concept of fishing systems viability which is often influenced by a combination of factors including biological productivity, as well as technical, economic and social factors. The productivity of the aquatic environments can be increased by the construction and installation of artificial reefs and fish aggregating devices. These man-made structures provide shelters, food and breeding grounds for fin fish and shell fish. The habitat enhancement techniques are appropriate, efficient, cheap and simple strategic options for increase in fish production. Recommendations for effective utilization and long term management are outlined.
Resumo:
The objective of the present study was to determine the most suitable extender and their respective dilution ratios for African catfish sperm for artificial induced breeding and cryopreservation purposes. Three natural extenders were tested i.e. coconut water, sugarcane water and soybean solutions, at three different levels of sperm to extender dilutions of 1:20, 1:30 and 1:40. While Ringer solution was used as a control Diluted sperm were fertilized with ready isolated eggs to assess the fertility and hatching rate at 0, 6 and 12 hour intervals. The results showed that the eggs hatched approximately 19 to 27 hours after fertilization. In general, the fertilization and hatching rates decreased with increasing dilution ratio. With respect to natural extenders, the coconut water showed the highest fertility and hatching rates at 1:20 dilution ratio. Therefore, coconut water at 1:20 dilution ratio was the optimal condition for African catfish spermatozoa among the natural extenders investigated.
Resumo:
An experiment was carried out to investigate the effects of Moina, artificial diet (55% CP) and nutrase xyla supplemented artificial diet on growth performances and survival rates of Clarias gariepinus larvae. A combination of Moina and artificial diet (with or without nutrass xyla) resulted in higher growth performance and survival rates during a 12-day nursing time with specific growth rates of 30.04-32.15% d super(-1) and survival rates of 87.5-90%. Best growth performance and survival rate was obtained with a combination of Moina and artificial diet supplemented with nutrias xylem. Feeding of Moina and artificial diet supplemented, with nutrias xyla alone to the larval led to a lower growth performance of 25.60-27.04% d super(-1). However, the survival rate of Monia of larvae fed a combination of Moina and artificial diet (with or without nutrias xylem supplementation) artificial diet without nutrias xylem addition proved relatively less suitable for larval rearing of Clarias gariepinus owing to a low survival rate of 69% and growth performance of 19.7% d super(-1). This study showed the feasibility of feeding a combination of Moina and nutrias xylem supplemented artificial diet to the larvae of Clarias gariepinus
Resumo:
Terns and skimmers nesting on saltmarsh islands often suffer large nest losses due to tidal and storm flooding. Nests located near the center of an island and on wrack (mats of dead vegetation, mostly eelgrass Zostera) are less susceptible to flooding than those near the edge of an island and those on bare soil or in saltmarsh cordgrass (Spartina alterniflora). In the 1980’s Burger and Gochfeld constructed artificial eelgrass mats on saltmarsh islands in Ocean County, New Jersey. These mats were used as nesting substrate by common terns (Sterna hirundo) and black skimmers (Rynchops niger). Every year since 2002 I have transported eelgrass to one of their original sites to make artificial mats. This site, Pettit Island, typically supports between 125 and 200 pairs of common terns. There has often been very little natural wrack present on the island at the start of the breeding season, and in most years natural wrack has been most common along the edges of the island. The terns readily used the artificial mats for nesting substrate. Because I placed artificial mats in the center of the island, the terns have often avoided the large nest losses incurred by terns nesting in peripheral locations. However, during particularly severe flooding events even centrally located nests on mats are vulnerable. Construction of eelgrass mats represents an easy habitat manipulation that can improve the nesting success of marsh-nesting seabirds.
Mitigating Scarring and Inflammation during Corneal Wound Healing using Nanofiber-Hydrogel Scaffolds
Resumo:
Due to the universal lack of donor tissue, there has been emerging interest in engineering materials to stimulate living cells to restore the features and functions of injured organs. We are particularly interested in developing materials for corneal use, where the necessity to maintain the tissue’s transparency presents an additional challenge. Every year, there are 1.5 – 2 million new cases of monocular blindness due to irregular healing of corneal injuries, dwarfing the approximately 150,000 corneal transplants performed. The large gap between the need and availability of cornea transplantation motivates us to develop a wound-healing scaffold that can prevent corneal blindness.
To develop such a scaffold, it is necessary to regulate the cells responsible for repairing the damaged cornea, namely myofibroblasts, which are responsible for the disordered and non-refractive index matched scar that leads to corneal blindness. Using in vitro assays, we identified that protein nanofibers of certain orientation can promote cell migration and modulate the myofibroblast phenotype. The nanofibers are also transparent, easy to handle and non-cytotoxic. To adhere the nanofibers to a wound bed, we examined the use of two different in situ forming hydrogels: an artificial extracellular matrix protein (aECM)-based gel and a photo-crosslinkable heparin-based gel. Both hydrogels can be formed within minutes, are transparent upon gelation and are easily tunable.
Using an in vivo mouse model for epithelial defects, we show that our corneal scaffolds (nanofibers together with hydrogel) are well-tolerated (no inflammatory response or turbidity) and support epithelium regrowth. We developed an ex vivo corneal tissue culture model where corneas that are wounded and treated with our scaffold can be cultured while retaining their ability to repair wounds for up to 21 days. Using this technique, we found that the aECM-based treatment induced a more favorable wound response than the heparin-based treatment, prompting us to further examine the efficacy of the aECM-based treatment in vivo using a rabbit model for stromal wounds. Results show that treated corneas have fewer myofibroblasts and immune cells than untreated ones, indicating that our corneal scaffold shows promise in promoting a calmer wound response and preventing corneal haze formation.
Resumo:
Morphogenesis is a phenomenon of intricate balance and dynamic interplay between processes occurring at a wide range of scales (spatial, temporal and energetic). During development, a variety of physical mechanisms are employed by tissues to simultaneously pattern, move, and differentiate based on information exchange between constituent cells, perhaps more than at any other time during an organism's life. To fully understand such events, a combined theoretical and experimental framework is required to assist in deciphering the correlations at both structural and functional levels at scales that include the intracellular and tissue levels as well as organs and organ systems. Microscopy, especially diffraction-limited light microscopy, has emerged as a central tool to capture the spatio-temporal context of life processes. Imaging has the unique advantage of watching biological events as they unfold over time at single-cell resolution in the intact animal. In this work I present a range of problems in morphogenesis, each unique in its requirements for novel quantitative imaging both in terms of the technique and analysis. Understanding the molecular basis for a developmental process involves investigating how genes and their products- mRNA and proteins-function in the context of a cell. Structural information holds the key to insights into mechanisms and imaging fixed specimens paves the first step towards deciphering gene function. The work presented in this thesis starts with the demonstration that the fluorescent signal from the challenging environment of whole-mount imaging, obtained by in situ hybridization chain reaction (HCR), scales linearly with the number of copies of target mRNA to provide quantitative sub-cellular mapping of mRNA expression within intact vertebrate embryos. The work then progresses to address aspects of imaging live embryonic development in a number of species. While processes such as avian cartilage growth require high spatial resolution and lower time resolution, dynamic events during zebrafish somitogenesis require higher time resolution to capture the protein localization as the somites mature. The requirements on imaging are even more stringent in case of the embryonic zebrafish heart that beats with a frequency of ~ 2-2.5 Hz, thereby requiring very fast imaging techniques based on two-photon light sheet microscope to capture its dynamics. In each of the hitherto-mentioned cases, ranging from the level of molecules to organs, an imaging framework is developed, both in terms of technique and analysis to allow quantitative assessment of the process in vivo. Overall the work presented in this thesis combines new quantitative tools with novel microscopy for the precise understanding of processes in embryonic development.
Resumo:
When salmonid redds are disrupted by spates, the displaced eggs will drift downstream. The mean distance of travel, the types of locations in which the eggs resettle and the depth of reburial of displaced eggs are not known. Investigation of these topics under field conditions presents considerable practical problems, though the use of artificial eggs might help to overcome some of them. Attempts to assess the similarities and/or differences in performance between real and artificial eggs are essential before artificial eggs can validly be used to simulate real eggs. The present report first compares the two types of egg in terms of their measurable physical characteristics (e.g. dimensions and density). The rate at which eggs fall in still water will relate to the rate at which they are likely to resettle in flowing water in the field. As the rate of fall will be influenced by a number of additional factors (e.g. shape and surface texture) which are not easily measured directly, the rates of fall of the two types of egg have been compared directly under controlled conditions. Finally, comparisons of the pattern of settlement of the two types of egg in flowing water in an experimental channel have been made. Although the work was primarily aimed at testing the value of artificial eggs as a simulation of real eggs, several side issues more directly concerned with the properties of real eggs and the likely distance of drift in natural streams have also been explored. This is the first of three reports made on this topic by the author in 1984.
Resumo:
Research into the production ecology of chalk streams using a large artificial recirculating stream is described. Physical chemical processes including calcium and inorganic phosphate levels, and exchange of gaseous carbon dioxide in both a simple closed system and a circulating system with gravel substrate have been monitored in both light and dark conditions. Further experiments were concerned with the seasonal changes in algal growth over the gravel substrate with constant water velocities and replenishment. The algal population, composed mainly of the diatoms Achnanthes minutissima, Meridion circulare, Nitzschia fonticola and Synedra ulna reached a peak in mid May and declined rapidly during June. Concentrations of phosphate phosphorus fell as the diatoms grew but was not thought to limit growth. Silicate concentrations followed the diatom cycle closely but never fell below 0.8 mg/l Si. It is possible that one of the nutrients may have been limiting the rate of growth due to steep diffusion gradients through the algal mat. In the last summer and autumn a hard calcareous crust composed of the green alga Gongrosira incrustans and the blue green alga Homeothrix varians , developed. The channel stream is compared with the natural conditions found in chalk streams.
Learning new articulator trajectories for a speech production model using artificial neural networks
Resumo:
Hatchling American Alligators (Alligator mississippiensis) produced from artificially incubated wild eggs were returned to their natal areas (repatriated). We compared artificially incubated and repatriated hatchlings released within and outside the maternal alligator’s home range with naturally incubated hatchlings captured and released within the maternal alligator’s home range on Lake Apopka, Lake Griffin, and Orange Lake in Florida. We used probability of recapture and total length at approximately nine months after hatching as indices of survival and growth rates. Artificially incubated hatchlings released outside of the maternal alligator’s home range had lower recapture probabilities than either naturally incubated hatchlings or artificially incubated hatchlings released near the original nest site. Recapture probabilities of other treatments did not differ significantly. Artificially incubated hatchlings were approximately 6% shorter than naturally incubated hatchlings at approximately nine months after hatching. We concluded that repatriation of hatchlings probably would not have long-term effects on populations because of the resiliency of alligator populations to alterations of early age-class survival and growth rates of the magnitude that we observed. Repatriation of hatchlings may be an economical alternative to repatriation of older juveniles for population restoration. However, the location of release may affect subsequent survival and growth.