2 resultados para Artificial organs
em CaltechTHESIS
Mitigating Scarring and Inflammation during Corneal Wound Healing using Nanofiber-Hydrogel Scaffolds
Resumo:
Due to the universal lack of donor tissue, there has been emerging interest in engineering materials to stimulate living cells to restore the features and functions of injured organs. We are particularly interested in developing materials for corneal use, where the necessity to maintain the tissue’s transparency presents an additional challenge. Every year, there are 1.5 – 2 million new cases of monocular blindness due to irregular healing of corneal injuries, dwarfing the approximately 150,000 corneal transplants performed. The large gap between the need and availability of cornea transplantation motivates us to develop a wound-healing scaffold that can prevent corneal blindness.
To develop such a scaffold, it is necessary to regulate the cells responsible for repairing the damaged cornea, namely myofibroblasts, which are responsible for the disordered and non-refractive index matched scar that leads to corneal blindness. Using in vitro assays, we identified that protein nanofibers of certain orientation can promote cell migration and modulate the myofibroblast phenotype. The nanofibers are also transparent, easy to handle and non-cytotoxic. To adhere the nanofibers to a wound bed, we examined the use of two different in situ forming hydrogels: an artificial extracellular matrix protein (aECM)-based gel and a photo-crosslinkable heparin-based gel. Both hydrogels can be formed within minutes, are transparent upon gelation and are easily tunable.
Using an in vivo mouse model for epithelial defects, we show that our corneal scaffolds (nanofibers together with hydrogel) are well-tolerated (no inflammatory response or turbidity) and support epithelium regrowth. We developed an ex vivo corneal tissue culture model where corneas that are wounded and treated with our scaffold can be cultured while retaining their ability to repair wounds for up to 21 days. Using this technique, we found that the aECM-based treatment induced a more favorable wound response than the heparin-based treatment, prompting us to further examine the efficacy of the aECM-based treatment in vivo using a rabbit model for stromal wounds. Results show that treated corneas have fewer myofibroblasts and immune cells than untreated ones, indicating that our corneal scaffold shows promise in promoting a calmer wound response and preventing corneal haze formation.
Resumo:
Morphogenesis is a phenomenon of intricate balance and dynamic interplay between processes occurring at a wide range of scales (spatial, temporal and energetic). During development, a variety of physical mechanisms are employed by tissues to simultaneously pattern, move, and differentiate based on information exchange between constituent cells, perhaps more than at any other time during an organism's life. To fully understand such events, a combined theoretical and experimental framework is required to assist in deciphering the correlations at both structural and functional levels at scales that include the intracellular and tissue levels as well as organs and organ systems. Microscopy, especially diffraction-limited light microscopy, has emerged as a central tool to capture the spatio-temporal context of life processes. Imaging has the unique advantage of watching biological events as they unfold over time at single-cell resolution in the intact animal. In this work I present a range of problems in morphogenesis, each unique in its requirements for novel quantitative imaging both in terms of the technique and analysis. Understanding the molecular basis for a developmental process involves investigating how genes and their products- mRNA and proteins-function in the context of a cell. Structural information holds the key to insights into mechanisms and imaging fixed specimens paves the first step towards deciphering gene function. The work presented in this thesis starts with the demonstration that the fluorescent signal from the challenging environment of whole-mount imaging, obtained by in situ hybridization chain reaction (HCR), scales linearly with the number of copies of target mRNA to provide quantitative sub-cellular mapping of mRNA expression within intact vertebrate embryos. The work then progresses to address aspects of imaging live embryonic development in a number of species. While processes such as avian cartilage growth require high spatial resolution and lower time resolution, dynamic events during zebrafish somitogenesis require higher time resolution to capture the protein localization as the somites mature. The requirements on imaging are even more stringent in case of the embryonic zebrafish heart that beats with a frequency of ~ 2-2.5 Hz, thereby requiring very fast imaging techniques based on two-photon light sheet microscope to capture its dynamics. In each of the hitherto-mentioned cases, ranging from the level of molecules to organs, an imaging framework is developed, both in terms of technique and analysis to allow quantitative assessment of the process in vivo. Overall the work presented in this thesis combines new quantitative tools with novel microscopy for the precise understanding of processes in embryonic development.