902 resultados para Aorte--Calcification
Resumo:
To assess the contribution of soft-bottoms to the carbon cycle in coral reefs, the net community production (p) was measured in winter at 3 stations on La Saline inner reef flat (Reunion Island). Changes in pH and total alkalinity at different irradiances (I) were assessed using benthic chambers (0.2 m2) during a 1-h incubation. Mean grain size, the silt and clay load and chlorophyll a content of the sediments were analysed in each chamber. Daily community production (P), gross community production (Pg) and community respiration (R) were estimated from p-I curves and daily irradiance variations (PAR, 400-700 nm). Sediment characteristics and chlorophyll a contents did not differ between the three sites, except for the silt and clay fraction at one station. R being higher than Pg (84.88 ± 7.36 and -62.29 ± 3.34 mmolC m-2 d-1 respectively), P value reached 22.59 ± 5.66 mmolC m-2 d-1. The sediments were therefore heterotrophic with a mean Pg/R lower than 1 (0.74 ± 0.05) and appear to be a carbon source. Our data suggested the importance of the degradation process in the functioning of near-reef sediments.
Resumo:
The growth and development of the aragonitic CaCO3 otoliths of teleost fish could be vulnerable to processes resulting from ocean acidification. The potential effects of an increase in atmospheric CO2 on the calcification of the otoliths were investigated by rearing Atlantic cod Gadus morhua L. larvae in 3 pCO2 concentrations-control (370 µatm), medium (1800 µatm) and high (4200 µatm)-from March to May 2010. Increased otolith growth was observed in 7 to 46 d post hatch (dph) cod larvae at elevated pCO2 concentrations. The sagittae and lapilli were usually largest in the high pCO2 treatment followed by the medium and control treatments. The greatest difference in mean otolith surface area (normalized to fish length) was for sagittae at 11 dph, with medium and high treatments being 46 and 43% larger than the control group, respectively. There was no significant pCO2 effect on the shape of the otoliths nor were there any trends in the fluctuating asymmetry, defined as the difference between the right and left sides, in relation to the increase in otolith growth from elevated pCO2.
Resumo:
An investigation was conducted to determine the effects of elevated pCO2 on the net production and calcification of an assemblage of corals maintained under near-natural conditions of temperature, light, nutrient, and flow. Experiments were performed in summer and winter to explore possible interactions between seasonal change in temperature and irradiance and the effect of elevated pCO2. Particular attention was paid to interactions between net production and calcification because these two processes are thought to compete for the same internal supply of dissolved inorganic carbon (DIC). A nutrient enrichment experiment was performed because it has been shown to induce a competitive interaction between photosynthesis and calcification that may serve as an analog to the effect of elevated pCO2. Net carbon production, NPC, increased with increased pCO2 at the rate of 3 ± 2% (?mol CO2aq kg?1)?1. Seasonal change of the slope NPC-[CO2aq] relationship was not significant. Calcification (G) was strongly related to the aragonite saturation state ? a . Seasonal change of the G-? a relationship was not significant. The first-order saturation state model gave a good fit to the pooled summer and winter data: G = (8 ± 1 mmol CaCO3 m?2 h?1)(? a ? 1), r 2 = 0.87, P = 0.0001. Both nutrient and CO2 enrichment resulted in an increase in NPC and a decrease in G, giving support to the hypothesis that the cellular mechanism underlying the decrease in calcification in response to increased pCO2 could be competition between photosynthesis and calcification for a limited supply of DIC.
Resumo:
A long-term (10 months) controlled experiment was conducted to test the impact of increased partial pressure of carbon dioxide (pCO2) on common calcifying coral reef organisms. The experiment was conducted in replicate continuous flow coral reef mesocosms flushed with unfiltered sea water from Kaneohe Bay, Oahu, Hawaii. Mesocosms were located in full sunlight and experienced diurnal and seasonal fluctuations in temperature and sea water chemistry characteristic of the adjacent reef flat. Treatment mesocosms were manipulated to simulate an increase in pCO2 to levels expected in this century [midday pCO2 levels exceeding control mesocosms by 365 ± 130 µatm (mean ± sd)]. Acidification had a profound impact on the development and growth of crustose coralline algae (CCA) populations. During the experiment, CCA developed 25% cover in the control mesocosms and only 4% in the acidified mesocosms, representing an 86% relative reduction. Free-living associations of CCA known as rhodoliths living in the control mesocosms grew at a rate of 0.6 g buoyant weight per year while those in the acidified experimental treatment decreased in weight at a rate of 0.9 g buoyant weight per year, representing a 250% difference. CCA play an important role in the growth and stabilization of carbonate reefs, so future changes of this magnitude could greatly impact coral reefs throughout the world. Coral calcification decreased between 15% and 20% under acidified conditions. Linear extension decreased by 14% under acidified conditions in one experiment. Larvae of the coral Pocillopora damicornis were able to recruit under the acidified conditions. In addition, there was no significant difference in production of gametes by the coral Montipora capitata after 6 months of exposure to the treatments.
Resumo:
Bivalve calcification, particularly of the early larval stages, is highly sensitive to the change in ocean carbonate chemistry resulting from atmospheric CO2 uptake. Earlier studies suggested that declining seawater [CO32-] and thereby lowered carbonate saturation affect shell production. However, disturbances of physiological processes such as acid-base regulation by adverse seawater pCO2 and pH can affect calcification in a secondary fashion. In order to determine the exact carbonate system component by which growth and calcification are affected it is necessary to utilize more complex carbonate chemistry manipulations. As single factors, pCO2 had no effects and [HCO3-] and pH had only limited effects on shell growth, while lowered [CO32-] strongly impacted calcification. Dissolved inorganic carbon (CT) limiting conditions led to strong reductions in calcification, despite high [CO32-], indicating that [HCO3-] rather than [CO32-] is the inorganic carbon source utilized for calcification by mytilid mussels. However, as the ratio [HCO3-] / [H+] is linearly correlated with [CO32-] it is not possible to differentiate between these under natural seawater conditions. An equivalent of about 80 µmol kg-1 [CO32-] is required to saturate inorganic carbon supply for calcification in bivalves. Below this threshold biomineralization rates rapidly decline. A comparison of literature data available for larvae and juvenile mussels and oysters originating from habitats differing substantially with respect to prevailing carbonate chemistry conditions revealed similar response curves. This suggests that the mechanisms which determine sensitivity of calcification in this group are highly conserved. The higher sensitivity of larval calcification seems to primarily result from the much higher relative calcification rates in early life stages. In order to reveal and understand the mechanisms that limit or facilitate adaptation to future ocean acidification, it is necessary to better understand the physiological processes and their underlying genetics that govern inorganic carbon assimilation for calcification.
Reduced calcification decreases photoprotective capability in the Coccolithophorid Emiliania huxleyi
Resumo:
Intracellular calcification of coccolithophores generates CO2 and consumes additional energy for acquisition of calcium and bicarbonate ions; therefore, it may correlate with photoprotective processes by influencing the energetics. To address this hypothesis, a calcifying Emiliania huxleyi strain (CS-369) was grown semi-continuously at reduced (0.1 mM, LCa) and ambient Ca2+ concentrations (10 mM, HCa) for 150 d (>200 generations). The HCa-grown cells had higher photosynthetic and calcification rates and higher contents of Chl a and carotenoids compared with the naked (bearing no coccoliths) LCa-grown cells. When exposed to stressfull levels of photosynthetically active radiation (PAR), LCa-grown cells displayed lower photochemical yield and less efficient non-photochemical quenching (NPQ). When the LCa- or HCa-grown cells were inversely shifted to their counterpart medium, LCa to HCa transfer increased photosynthetic carbon fixation (P), calcification rate (C), the C/P ratio, NPQ and pigment contents, whereas those shifted from HCa to LCa exhibited the opposite effects. Increased NPQ, carotenoids and quantum yield were clearly linked with increased or sustained calcification in E. huxleyi. The calcification must have played a role in dissipating excessive energy or as an additional drainage of electrons absorbed by the photosynthetic antennae. This phenomenon was further supported by testing two non-calcifying strains, which showed insignificant changes in photosynthetic carbon fixation and NPQ when transferred to LCa conditions
Seawater carbonate chemistry and Balanophyllia europaea gross calcification during experiments, 2011
Resumo:
The cold-water coral Lophelia pertusa is one of the few species able to build reef-like structures and a 3-dimensional coral framework in the deep oceans. Furthermore, deep cold-water coral bioherms may be among the first marine ecosystems to be affected by ocean acidification. Colonies of L. pertusa were collected during a cruise in 2006 to cold-water coral bioherms of the Mingulay reef complex (Hebrides, North Atlantic). Shortly after sample collection onboard these corals were labelled with calcium-45. The same experimental approach was used to assess calcification rates and how those changed due to reduced pH during a cruise to the Skagerrak (North Sea) in 2007. The highest calcification rates were found in youngest polyps with up to 1% d-1 new skeletal growth and average rates of 0.11±0.02% d-1±S.E.). Lowering pH by 0.15 and 0.3 units relative to the ambient level resulted in calcification being reduced by 30 and 56%. Lower pH reduced calcification more in fast growing, young polyps (59% reduction) than in older polyps (40% reduction). Thus skeletal growth of young and fast calcifying corallites suffered more from ocean acidification. Nevertheless, L. pertusa exhibited positive net calcification (as measured by 45Ca incorporation) even at an aragonite saturation state below 1.
Resumo:
Carbon dioxide and oxygen fluxes were measured in 0.2 m2 enclosures placed at the water sediment interface in the SW lagoon of New Caledonia. Experiments, performed at several stations in a wide range of environments, were carried out both in darkness to estimate respiration and at ambient light, to assess the effects of primary production. The community respiratory quotient (CRQ = CO2 production rate/02 consumption rate) and the community photosynthetic quotient (CPQ= gross O2 production rate/gross CO2 consumption rate) were calculated by functional regressions. The CRQ value, calculated from 61 incubations, was 1.14 (S.E. 0.05) and the CPQ value, obtained from 18 incubations, was 1.03 (S.E. 0.08). The linearity of the relationship between the O2 and the CO2 fluxes suggests that these values are representative for the whole lagoon
Seawater carbonate chemistry and calcification during an experiment with a coral Porites lutea, 2004
Resumo:
Using living corals collected from Okinawan coral reefs, laboratory experiments were performed to investigate the relationship between coral calcification and aragonite saturation state (W) of seawater at 25?C. Calcification rate of a massive coral Porites lutea cultured in a beaker showed a linear increase with increasing Waragonite values (1.08-7.77) of seawater. The increasing trend of calcification rate (c) for W is expressed as an equation, c = aW + b (a, b: constants). When W was larger than ~4, the coral samples calcified during nighttime, indicating an evidence of dark calcification. This study strongly suggests that calcification of Porites lutea depends on W of ambient seawater. A decrease in saturation state of seawater due to increased pCO2 may decrease reef-building capacity of corals through reducing calcification rate of corals.
Resumo:
Coccolithophorids are enigmatic plankton that produce calcium carbonate coccoliths, which over geological time have buried atmospheric CO2 into limestone, changing both the atmosphere and geology of the Earth. However, the role of coccoliths for the proliferation of these organisms remains unclear; suggestions include roles in anti-predation, enhanced photosynthesis and sun-screening. Here we test the hypothesis that calcification stabilizes the pH of the seawater proximate to the organisms, providing a level of acidification countering the detrimental basification that occurs during net photosynthesis. Such bioengineering provides a more stable pH environment for growth and fits the empirical evidence for changes in rates of calcification under different environmental conditions. Under this scenario, simulations suggest that the optimal production ratio of inorganic to organic particulate C (PIC : POCprod) will be lower (by approx. 20%) with ocean acidification and that overproduction of coccoliths in a future acidified ocean, where pH buffering is weaker, presents a risk to calcifying cells.
Resumo:
Coccolithophorids are enigmatic plankton that produce calcium carbonate coccoliths, which over geological time have buried atmospheric CO2 into limestone, changing both the atmosphere and geology of the Earth. However, the role of coccoliths for the proliferation of these organisms remains unclear; suggestions include roles in anti-predation, enhanced photosynthesis and sun-screening. Here we test the hypothesis that calcification stabilizes the pH of the seawater proximate to the organisms, providing a level of acidification countering the detrimental basification that occurs during net photosynthesis. Such bioengineering provides a more stable pH environment for growth and fits the empirical evidence for changes in rates of calcification under different environmental conditions. Under this scenario, simulations suggest that the optimal production ratio of inorganic to organic particulate C (PIC : POCprod) will be lower (by approx. 20%) with ocean acidification and that overproduction of coccoliths in a future acidified ocean, where pH buffering is weaker, presents a risk to calcifying cells.
Resumo:
The algae represent major producers of calcium carbonate and silica among the world's biota. Calcification involves the precipitation of CaCO3 from Ca2+ and CO32− ions. Algal calcification by coccolithophores may account for up to half of global oceanic CaCO3 production. Silicification, the transformation of silicic acid into skeletal material, occurs in a few algal groups. The abundant diatoms represent the major silicifiers, playing a key role in marine silica cycling. Fossilised diatomaceous deposits have long been exploited for building and filling materials. Biomineralisation of calcium and silicon require homeostatic ion controls that are well characterised for Ca2+ and H+ in coccolithophores. Calcification occurs in an alkalinised vesicle, while silicification requires an acidic pH. Research on silicification remains focused upon cell wall development. Initiation and development of structures that are mineralised intracellularly requires initiation and regulation by organic components within the vesicles. Low-temperature, low-pressure biogenic formation of silica and calcite has potential for biotechnological application in novel industrial processes.
Resumo:
The algae represent major producers of calcium carbonate and silica among the world's biota. Calcification involves the precipitation of CaCO3 from Ca2+ and CO32− ions. Algal calcification by coccolithophores may account for up to half of global oceanic CaCO3 production. Silicification, the transformation of silicic acid into skeletal material, occurs in a few algal groups. The abundant diatoms represent the major silicifiers, playing a key role in marine silica cycling. Fossilised diatomaceous deposits have long been exploited for building and filling materials. Biomineralisation of calcium and silicon require homeostatic ion controls that are well characterised for Ca2+ and H+ in coccolithophores. Calcification occurs in an alkalinised vesicle, while silicification requires an acidic pH. Research on silicification remains focused upon cell wall development. Initiation and development of structures that are mineralised intracellularly requires initiation and regulation by organic components within the vesicles. Low-temperature, low-pressure biogenic formation of silica and calcite has potential for biotechnological application in novel industrial processes.