945 resultados para Anterior Cingolate Cortex
Resumo:
Increased Kt concentration in seawater induces metamorphosis in the ascidian Herdmania momus. Larvae cultivated at 24 degrees C exhibit highest rates of metamorphosis when treated with 40 mM KCl-elevated seawater at 21 degrees C. At 24 degrees C, H. momus larvae develop competence to respond to KCl-seawater and initiate metamorphosis approximately 3 h after hatching. Larval trunks and tails separated from the anterior papillae region, but maintained in a common tunic at a distance of greater than 60 mu m, do not undergo metamorphosis when treated with KCl-seawater; normal muscle degradation does not occur in separated tails while ampullae develop from papillae-containing anterior fragments. Normal programmed degradation of myofibrils occurs when posterior fragments are fused to papillae-containing anterior fragments. These data indicate that H. momus settlement and metamorphosis only occurs when larvae have attained competence, and suggest that an anterior signalling centre is stimulated to release a factor that induces metamorphosis.
Resumo:
Evidence that combined glucosamine sulfate and chondroitin sulfate (Gluchon) or isolated glucosamine (Glu) modifies joint damage in osteoarthritis (OA) is still lacking. We studied joint pain and cartilage damage using the anterior cruciate ligament transection (ACLT) model. Wistar rats were subjected to ACLT of the right knee ( OA) or sham operation. Groups received either Glu (500 mg/kg), Gluchon (500 mg/kg glucosamine +400 mg/kg chondroitin) or vehicle (non-treated-NT) per os starting 7 days prior to ACLT until sacrifice at 70 days. Joint pain was evaluated daily using the rat-knee joint articular incapacitation test. Structural joint damage was assessed using histology and biochemistry as the chondroitin sulfate ( CS) content of cartilage by densitometry (microgram per milligram dried cartilage), comparing to standard CS. The molar weight (Mw) of the CS samples, used as a qualitative biochemical parameter, was obtained by comparing their relative mobility on a polyacrylamide gel electrophoresis to standard CS. Gluchon, but not Glu, significantly reduced joint pain (P<0.05) compared to NT. There was an increase in CS content in the OA group (77.7 +/- 8.3 mu g/mg) compared to sham (53.5 +/- 11.2 mu g/mg) (P<0.05). The CS from OA samples had higher Mw (4:62 +/- 0:24 x 10(4) g/mol) compared to sham (4:18 +/- 0:19 x 10(4) g/mol) (P<0.05). Gluchon administration significantly reversed both the increases in CS content (54.4 +/- 12.1 mu g/mg) and Mw (4:18 +/- 0:2 x 104 g/mol) as compared to NT. Isolated Glu decreased CS content though not reaching statistical significance. Cartilage histology alterations were also significantly prevented by Gluchon administration. Gluchon provides clinical (analgesia) and structural benefits in the ACLT model. This is the first demonstration that biochemical alterations occurring in parallel to histological damage in OA are prevented by Gluchon administration.
Resumo:
OBJECTIVE To examine cortical thickness and volumetric changes in the cortex of patients with polymicrogyria, using an automated image analysis algorithm. METHODS Cortical thickness of patients with polymicrogyria was measured using magnetic resonance imaging (MRI) cortical surface-based analysis and compared with age-and sex-matched healthy subjects. We studied 3 patients with disorder of cortical development (DCD), classified as polymicrogyria, and 15 controls. Two experienced neuroradiologists performed a conventional visual assessment of the MRIs. The same data were analyzed using an automated algorithm for tissue segmentation and classification. Group and individual average maps of cortical thickness differences were produced by cortical surface-based statistical analysis. RESULTS Patients with polymicrogyria showed increased thickness of the cortex in the same areas identified as abnormal by radiologists. We also identified a reduction in the volume and thickness of cortex within additional areas of apparently normal cortex relative to controls. CONCLUSIONS Our findings indicate that there may be regions of reduced cortical thickness, which appear normal from radiological analysis, in the cortex of patients with polymicrogyria. This finding suggests that alterations in neuronal migration may have an impact in the cortical formation of the cortical areas that are visually normal. These areas are associated or occur concurrently with polymicrogyria.
Resumo:
OBJECTIVE: We introduce a technique for performing a selective amygdalohippocampectomy (AH) through a minisupraorbital approach. METHODS: A minisupraorbital craniotomy and an anterior selective AH were performed in 8 cadaver heads (16 sides). The anatomic specimens were analyzed, and the extent of resection of the hippocampus and amygdala was evaluated. Surgically relevant measurements were performed using anatomic specimens. An image-guided system was used to document the extent of the anterior AH. Laboratory data were used to support the clinical application of the technique. RESULTS: The anterior route allowed removal of the amygdala and hippocampus, as confirmed by anatomic assessment. The image-guided system and anatomic evaluation confirmed that the amygdala and hippocampus can be accessed and removed through this route. The mean distance between the anterior aspect of the uncus and the tip of the temporal horn was 17.0 +/- 4.6 mm; the mean distance from the head of the hippocampus to the posterior border of the cerebral peduncles was 26.0 +/- 3.2 mm. Clinical application resulted in satisfactory removal of the amygdala and hippocampus. CONCLUSION: The anterior route for selective AH is a logical and straightforward approach to the mesial temporal lobe. Compared with other variations, it is less invasive and destructive, especially in terms of the fibers of the optic pathway, temporal stem, and lateral temporal neocortex.
Resumo:
Anterior ethmoidal artery (AEA) ligation may be necessary in cases of severe epistaxis not controllable with traditional therapy. Endoscopic endonasal ligation of the AEA is not used frequently; there are few studies in the literature for standardization of the endoscopic technique for this vessel. Aim: To demonstrate the feasibility of periorbital AEA ligation in a transethmoidal endoscopic approach. Methods: A prospective study where 50 nasal cavities were dissected. After anterior ethmoidectomy and partial removal of lamina papyracea, the periorbital area was carefully dissected along a subperiosteal plane to identify the AEA. The vessel was exposed within the orbit and dissected. Results: Data on technical difficulties, complications, the learning curve and anatomical variations were gathered. Conclusion: An endonasal endoscopic approach to the AEA within the orbit was shown to be feasible. Identifying the artery is not difficult, and this technique avoids external incisions. This approach appears to be an excellent alternative for approaching the AEA. Further clinical studies are needed to demonstarte the benefits of this technique.
Resumo:
Substance-dependence is highly associated with executive cognitive function (ECF) impairments. However. considering that it is difficult to assess ECF clinically, the aim of the present study was to examine the feasibility of a brief neuropsychological tool (the Frontal Assessment Battery FAB) to detect specific ECF impairments in a sample of substance-dependent individuals (SDI). Sixty-two subjects participated in this study. Thirty DSM-IV-diagnosed SDI, after 2 weeks of abstinence, and 32 healthy individuals (control group) were evaluated with FAD and other ECF-related tasks: digits forward (DF), digits backward (DB), Stroop Color Word Test (SCWT), and Wisconsin Card Sorting Test (WCST). SDI did not differ from the control group on sociodemographic variables or IQ. However, SDI performed below the controls in OF, DB, and FAB. The SDI were cognitively impaired in 3 of the 6 cognitive domains assessed by the FAB: abstract reasoning, motor programming, and cognitive flexibility. The FAB correlated with DF, SCWT, and WCST. In addition, some neuropsychological measures were correlated with the amount of alcohol, cannabis, and cocaine use. In conclusion, SDI performed more poorly than the comparison group on the FAB and the FAB`s results were associated with other ECF-related tasks. The results suggested a negative impact of alcohol, cannabis, and cocaine use on the ECF. The FAB may be useful in assisting professionals as an instrument to screen for ECF-related deficits in SDI. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In rats, phospholipase A(2) (PLA(2)) activity was found to be increased in the hippocampus immediately after training and retrieval of a contextual fear conditioning paradigm (step-down inhibitory avoidance [IA] task). In the present study we investigated whether PLA(2) is also activated in the cerebral cortex of rats in association with contextual fear learning and retrieval. We observed that IA training induces a rapid (immediately after training) and long-lasting (3 h after training) activation of PLA(2) in both frontal and parietal cortices. However, immediately after retrieval (measured 24 h after training), PLA(2) activity was increased just in the parietal cortex. These findings suggest that PLA(2) activity is differentially required in the frontal and parietal cortices for the mechanisms of contextual learning and retrieval. Because reduced brain PLA(2) activity has been reported in Alzheimer disease, our results suggest that stimulation of PLA(2) activity may offer new treatment strategies for this disease.
Resumo:
Objective: The purpose of this study was to investigate regional structural abnormalities in the brains of five patients with refractory obsessive-compulsive disorder (OCD) submitted to gamma ventral capsulotomy. Methods: We acquired morphometric magnetic resonance imaging (MRI) data before and after 1 year of radiosurgery using a 1.5-T MRI scanner. Images were spatially normalized and segmented using optimized voxel-based morphometry (VBM) methods. Voxelwise statistical comparisons between pre- and post-surgery MRI scans were performed using a general linear model. Findings in regions predicted a priori to show volumetric changes (orbitofrontal cortex, anterior cingulate gyrus, basal ganglia and thalamus) were reported as significant if surpassing a statistical threshold of p<0.001 (uncorrected for multiple comparisons). Results: We detected a significant regional postoperative increase in gray matter volume in the right inferior frontal gyri (Brodmann area 47, BA47) when comparing all patients pre and postoperatively. Conclusions: Our results support the current theory of frontal-striatal-thalamic-cortical (FSTC) circuitry involvement in OCD pathogenesis. Gamma ventral capsulotomy is associated with neurobiological changes in the inferior orbitofrontal cortex in refractory OCD patients. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this paper we present a new neuroeconomics model for decision-making applied to the Attention-Deficit/Hyperactivity Disorder (ADHD). The model is based on the hypothesis that decision-making is dependent on the evaluation of expected rewards and risks assessed simultaneously in two decision spaces: the personal (PDS) and the interpersonal emotional spaces (IDS). Motivation to act is triggered by necessities identified in PDS or IDS. The adequacy of an action in fulfilling a given necessity is assumed to be dependent on the expected reward and risk evaluated in the decision spaces. Conflict generated by expected reward and risk influences the easiness (cognitive effort) and the future perspective of the decision-making. Finally, the willingness (not) to act is proposed to be a function of the expected reward (or risk), adequacy, easiness and future perspective. The two most frequent clinical forms are ADHD hyperactive (AD/HDhyp) and ADHD inattentive (AD/HDdin). AD/HDhyp behavior is hypothesized to be a consequence of experiencing high rewarding expectancies for short periods of time, low risk evaluation, and short future perspective for decision-making. AD/HDin is hypothesized to be a consequence of experiencing high rewarding expectancies for long periods of time, low risk evaluation, and long future perspective for decision-making.
Resumo:
Objectives The subgenual prefrontal cortex (SGPFC) is an important brain region involved in emotional regulation and reward mechanisms Volumetric abnormalities in this region have been identified in adults with bipolar disorder but thus far not in pediatric cases We examined the volume of this brain region in subjects with pediatric bipolar disorder (PBD) and compared them to healthy controls Methods Fifty one children and adolescents (mean age +/- SD 13 2 +/- 2 9 y) with DSM-IV PBD and 41 (mean age +/- SD 13 7 +/- 2 7 y) healthy comparison subjects (HC) underwent 1 5 T structural magnetic resonance imaging (MRI) brain scans We traced the SGPFC manually and compared SGPFC gray matter volumes using analysis of covariance with age gender and intracranial volume as covariates We also examined the relationship of family history of affective disorders and medication status to SGPFC volumes Results SGPFC volumes were not significantly different in PBD and HC subjects However exploratory analysis showed PBD subjects who had one or more first degree relatives with mood disorders (n = 33) had significantly smaller left hemisphere SGPFC compared to HC (p = 003 Sidak corrected) Current usage of a mood stabilizer was significantly associated with larger right SGPFC volume in PBD (F = 4 82 df = 1/41 p = 0 03) Conclusion Subjects with PBD and a close family history of mood disorders may have smaller left SGPFC volumes than HC Mood stabilizing medication may also impact SGPFC size and could have masked more subtle abnormalities overall (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Objectives: The absence of pathophysiologically relevant diagnostic markers of bipolar disorder (BD) leads to its frequent misdiagnosis as unipolar depression (UD). We aimed to determine whether whole brain white matter connectivity differentiated BD from UD depression. Methods: We employed a three-way analysis of covariance, covarying for age, to examine whole brain fractional anisotropy (FA), and corresponding longitudinal and radial diffusivity, in currently depressed adults: 15 with BD-type I (mean age 36.3 years, SD 12.0 years), 16 with recurrent UD (mean age 32.3 years, SD 10.0 years), and 24 healthy control adults (HC) (mean age 29.5 years, SD 9.43 years). Depressed groups did not differ in depression severity, age of illness onset, and illness duration. Results: There was a main effect of group in left superior and inferior longitudinal fasciculi (SLF and ILF) (all F >= 9.8; p <= .05, corrected). Whole brain post hoc analyses (all t >= 4.2; p <= .05, corrected) revealed decreased FA in left SLF in BD, versus UD adults in inferior temporal cortex and, versus HC, in primary sensory cortex (associated with increased radial and decreased longitudinal diffusivity, respectively); and decreased FA in left ILF in UD adults versus HC. A main effect of group in right uncinate fasciculus (in orbitofrontal cortex) just failed to meet significance in all participants but was present in women. Post hoc analyses revealed decreased right uncinate fasciculus FA in all and in women, BD versus HC. Conclusions: White matter FA in left occipitotemporal and primary sensory regions supporting visuospatial and sensory processing differentiates BD from UD depression. Abnormally reduced FA in right fronto-temporal regions supporting mood regulation, might underlie. predisposition to depression in BD. These measures might help differentiate pathophysiologic processes of BD versus UD depression.
Resumo:
Few studies have investigated in vivo changes of the cholinergic basal forebrain in Alzheimer`s disease (AD) and amnestic mild cognitive impairment (MCI), an at risk stage of AD. Even less is known about alterations of cortical projecting fiber tracts associated with basal forebrain atrophy. In this study, we determined regional atrophy within the basal forebrain in 21 patients with AD and 16 subjects with MCI compared to 20 healthy elderly subjects using deformation-based morphometry of MRI scans. We assessed effects of basal forebrain atrophy on fiber tracts derived from high-resolution diffusion tensor imaging (DTI) using tract-based spatial statistics. We localized significant effects relative to a map of cholinergic nuclei in MRI standard space as determined from a postmortem brain. Patients with AD and MCI subjects showed reduced volumes in basal forebrain areas corresponding to anterior medial and lateral, intermediate and posterior nuclei of the Nucleus basalis of Meynert (NbM) as well as in the diagonal band of Broca nuclei (P < 0.01). Effects in MCI subjects were spatially more restricted than in AD, but occurred at similar locations. The volume of the right antero-lateral NbM nucleus was correlated with intracortical projecting fiber tract integrity such as the corpus callosum, cingulate, and the superior longitudinal, inferior longitudinal, inferior fronto-occipital, and uncinate fasciculus (P < 0.05, corrected for multiple comparisons). Our findings suggest that a multimodal MRI-DTI approach is supportive to determine atrophy of cholinergic nuclei and its effect on intracortical projecting fiber tracts in AD. Hum Brain Mapp 32: 1349-1362, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5 min with current density = 0.16-0.25 A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80 A/m(2)) for a considerably longer duration (20 min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15 Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15 Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. (C) 2010 Elsevier Ireland Ltd. All rights reserved.