988 resultados para Analytical geometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a physically based analytical quantum linear threshold voltage model for short channel quad gate MOSFETs is developed. The proposed model, which is suitable for circuit simulation, is based on the analytical solution of 3-D Poisson and 2-D Schrodinger equation. Proposed model is fully validated against the professional numerical device simulator for a wide range of device geometries and also used to analyze the effect of geometry variation on the threshold voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Literature suggests that apart from a significant percentage of water loss from seepage, downward seepage from the channel causes an increase in the mobility of channel bed materials and thus changes the channel stability. Consequently, regime conditions (which provide the relationship among hydraulic parameters) should also be revised by incorporating downward seepage as an additional parameter. In the present work, regime conditions for the prediction of channel geometry in alluvial channels affected by downward seepage have been formulated on the basis of experimental observations. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real Linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of 'multiplying' two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level systems is outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the simplest IEEE 802.11 WLAN networks for which analytical models are available and seek to provide an experimental validation of these models. Our experiments include the following cases: (i) two nodes with saturated queues, sending fixed-length UDP packets to each other, and (ii) a TCP-controlled transfer between two nodes. Our experiments are based entirely on Aruba AP-70 access points operating under Linux. We report our observations on certain non-standard behavior of the devices. In cases where the devices adhere to the standards, we find that the results from the analytical models estimate the experimental data with a mean error of 3-5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop analytical models for estimating the energy spent by stations (STAs) in infrastructure WLANs when performing TCP controlled file downloads. We focus on the energy spent in radio communication when the STAs are in the Continuously Active Mode (CAM), or in the static Power Save Mode (PSM). Our approach is to develop accurate models for obtaining the fraction of times the STA radios spend in idling, receiving and transmitting. We discuss two traffic models for each mode of operation: (i) each STA performs one large file download, and (ii) the STAs perform short file transfers. We evaluate the rate of STA energy expenditure with long file downloads, and show that static PSM is worse than just using CAM. For short file downloads we compute the number of file downloads that can be completed with given battery capacity, and show that PSM performs better than CAM for this case. We provide a validation of our analytical models using the NS-2 simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In nature, helical structures arise when identical structural subunits combine sequentially, the orientational and translational relation between each unit and its predecessor remaining constant. A helical structure is thus generated by the repeated action of a screw transformation acting on a subunit. A plane hexagonal lattice wrapped round a cylinder provides a useful starting point for describing the helical conformations of protein molecules, for investigating the geometrical properties of carbon nanotubes, and for certain types of dense packings of equal spheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we develop an analytical heat transfer model, which is capable of analyzing cyclic melting and solidification processes of a phase change material used in the context of electronics cooling systems. The model is essentially based on conduction heat transfer, with treatments for convection and radiation embedded inside. The whole solution domain is first divided into two main sub-domains, namely, the melting sub-domain and the solidification sub-domain. Each sub-domain is then analyzed for a number of temporal regimes. Accordingly, analytical solutions for temperature distribution within each subdomain are formulated either using a semi-infinity consideration, or employing a method of quasi-steady state, depending on the applicability. The solution modules are subsequently united, leading to a closed-form solution for the entire problem. The analytical solutions are then compared with experimental and numerical solutions for a benchmark problem quoted in the literature, and excellent agreements can be observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simplified theory of carrier backscattering coefficient in a twofold degenerate asymmetric bilayer graphene nanoribbon (BGN) under the application of a low static electric field. We show that for a highly asymmetric BGN(Delta = gamma), the density of states in the lower subband increases more that of the upper, in which Delta and gamma are the gap and the interlayer coupling constant, respectively. We also demonstrate that under the acoustic phonon scattering regime, the formation of two distinct sets of energy subbands signatures a quantized transmission coefficient as a function of ribbon width and provides an extremely low carrier reflection coefficient for a better Landauer conductance even at room temperature. The well-known result for the ballistic condition has been obtained as a special case of the present analysis under certain limiting conditions which forms an indirect validation of our theoretical formalism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt (11) phthalocyanine (CoPc) molecules have been encapsulated within the supercage of zeolite-Y. The square-planar complex, being larger than the almost spherical cage, is forced to adopt a distorted geometry on encapsulation. A comparative spectroscopic and magnetic investigation of CoPc encapsulated in zeolite-Y and in the unencapsulated state is reported. These results supported by molecular modeling have been used to understand the nature and extent of the loss of planarity of CoPc on encapsulation. The encapsulated molecule is shown to be the trans-diprotonated species in which the center of inversion is lost due to distortions required to accommodate the square complex within the zeolite. Encapsulation also leads to an enhancement of the magnetic moment of the CoPc. This is shown to be a consequence of the nonplanar geometry of the encapsulated molecule resulting in an excited high-spin state being thermally accessible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of vacuum inside the cavity of a capacitive micromachined ultrasonic transducer (CMUT) causes the membrane of the device (which is the main vibrating structural component) to deflect towards the substrate, thereby causing a reduction in the effective gap height. This reduction causes a drastic decrease in the pull-in voltage of the device limiting the DC bias at which the device can be operated for maximum efficiency. In addition, this initial deflection of the membrane due to atmospheric pressure, causes significant stress stiffening of the the membrane, changing the natural frequency of the device significantly from the design value. To circumvent the deleterious effects of vacuum in the sealed cavity, we investigate the possibility of using sealed CMUT cavities with air inside at ambient pressure. In order to estimate the transducer loss due to the presence of air in the sealed cavity, we evaluate the resulting damping and determine the forces acting on the vibrating membrane resulting from the compression of the trapped air film. We take into account the flexure of the top vibrating membrane instead of assuming the motion to be parallel-plate like. Towards this end, we solve the linearized Reynolds equation using the appropriate boundary conditions and show that, for a sealed CMUT cavity, the presence of air does not cause any squeeze film damping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the successful performance of a granular filter medium, existing design guidelines, which are based on the particle size distribution (PSD) characteristics of the base soil and filter medium, require two contradictory conditions to be satisfied, viz., soil retention and permeability. In spite of the wider applicability of these guidelines, it is well recognized that (i) they are applicable to a particular range of soils tested in the laboratory, (ii) the design procedures do not include performance-based selection criteria, and (iii) there are no means to establish the sensitivity of the important variables influencing performance. In the present work, analytical solutions are developed to obtain a factor of safety with respect to soil-retention and permeability criteria for a base soil - filter medium system subjected to a soil boiling condition. The proposed analytical solutions take into consideration relevant geotechnical properties such as void ratio, permeability, dry unit weight, effective friction angle, shape and size of soil particles, seepage discharge, and existing hydraulic gradient. The solution is validated through example applications and experimental results, and it is established that it can be used successfully in the selection as well as design of granular filters and can be applied to all types of base soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work intends to demonstrate the importance of geometrically nonlinear crosssectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the four beam reference curves. For thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses, more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the nonlinear, flexible fourbar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we shall attempt to identify and investigate a few problems where the cross-sectional nonlinearities are significant. This will be carried out by varying stacking sequences and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form nonlinear beam stiffness matrix. Numerical examples will be presented and results from this analysis will be compared with those available in the literature, for linear cross-sectional analysis and isotropic materials as special cases.