846 resultados para Aluminum zinc magnesium copper alloy
Resumo:
This study aimed to analyze the phytoremediation potential of Eichhornia crassipes in natural environments, optimize the extraction process of crude protein from plant tissue and, obtain and characterize this process in order to determine its viability of use instead of the protein sources of animal and/or human feed. For this, it has been determined in Apodi/Mossoró river water the concentration of ammonium ions, nitrite, nitrate, calcium, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, aluminum, cádmium, lead, and total chromium; It was determined in plant tissue of aquatic macrophytes of Eichhornia crassipes species present in Apodi/Mossoró River the moisture content, ash, calcium, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, aluminum, cadmium, lead, total chromium, total nitrogen and crude protein. It was also determined the translocation factor and bioaccumulation of all the quantified elements; It was developed and optimized the extraction procedure of crude protein based on the isoelectric method and a factorial design 24 with repetition; It was extracted and characterized the extract obtained by determining the moisture content, ash, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, cadmium, total nitrogen and crude protein. And finally, it was also characterized the protein extract using Thermogravimetric Analysis (TG), Derived Thermogravimetric (DTG), Differential Scanning Calorimetry (DSC), Infrared Spectroscopy (FT-IR) and jelly-like electrophoresis of polyacrylamide (SDS -PAGE) to assess the their molecular weights/mass. Thus, from the results obtained for the translocation and bioaccumulation factors was found that the same can be used as phytoremediation agent in natural environments of all quantified elements. It was also found that the developed method of extraction and protein precipitation was satisfactory for the purpose of the work, which gave the best conditions of extraction and precipitation of proteins as: pH extraction equal to 13.0, extraction temperature equals 60 ° C, reaction time equals to 30 minutes, and pH precipitation equals to 4.0. As for the extract obtained, the total nitrogen and crude protein were quantified higher than those found in the plant, increasing the crude protein content approximately 116.88% in relation to the quantified contente in the vegetal tissue of macrophyte. The levels of nickel and cadmium were the unique that were found below the detection limit of used the equipment. The electrophoretic analysis allowed us to observe that the protein extract obtained is composed of low polypeptide chains by the molecular and phytochelatins, with 6 and 15 kDa bands. Analysis of TG, DTG, DSC and FT-IR showed similarities in protein content of the obtained extracts based on different collection points and 9 parts of the plant under study, as well as commercial soy protein and casein. Finally, based on all these findings, it was concluded that the obtained extract in this work can be used instead of the protein sources of animal feed should, before that, test its digestibility. As human supplementation, it is necessary to conduct more tests associated with the optimization process in the sense of removing undesirable components and constant monitoring of the water body and the raw material used
Resumo:
Silica gel chemically modified with 2-aminotiazole groups (SiAT), was used for preconcentration of cupper, zinc, nickel and iron from gasoline, normally used as a engine fuel. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl-0.25-2.00 mol 1(-1)) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for cupper, iron, nickel and zinc are 0.8, 3, 2 and 0.1 mug 1(-1), respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in gasoline using flame AAS for their quantification. (C) 2004 Published by Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present first-principles calculations of the thermodynamic and electronic properties of the zinc-blende ternary InxGa1-xN. InxAl1-xN, BxGa1-xN, and BxAl1-xN alloys. They are based on a generalized quasi-chemical approximation and a pseudopotential-plane-wave method. T-x phase diagrams for the alloys are obtained, We show that due to the large difference in interatomic distances between the binary compounds a significant phase miscibility gap for the alloys is found. In particular for the InxGa1-xN alloy, we show also experimental results obtained from X-ray and resonant Raman scattering measurements, which indicate the presence of an In-rich phase with x approximate to 0.8. For the boron-containing alloy layers we found a very high value for the critical temperature for miscibility. similar to9000 K. providing an explanation for the difficulties encountered to grow these materials with higher boron content. The influence of a biaxial strain on phase diagrams, energy gaps and gap bowing of these alloys is also discussed. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-mum thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10(-9)-10(-8) mol L-1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.
Resumo:
An automatic Procedure with a high current-density anodic electrodissolution unit (HDAE) is proposed for the determination of aluminium, copper and zinc in non-ferroalloys by flame atonic absorption spectrometry, based on the direct solid analysis. It consists of solenoid valve-based commutation in a flow-injection system for on-line sample electro-dissolution and calibration with one multi-element standard, an electrolytic cell equipped with two electrodes (a silver needle acts as cathode, and sample as anode), and an intelligent unit. The latter is assembled in a PC-compatible microcomputer for instrument control, and far data acquisition and processing. General management of the process is achieved by use of software written in Pascal. Electrolyte compositions, flow rates, commutation times, applied current and electrolysis time mere investigated. A 0.5 mol l(-1) HNO3 solution was elected as electrolyte and 300 A/cm(2) as the continuous current pulse. The performance of the proposed system was evaluated by analysing aluminium in Al-allay samples, and copper/zinc in brass and bronze samples, respectively. The system handles about 50 samples per hour. Results are precise (R.S.D < 2%) and in agreement with those obtained by ICP-AES and spectrophotometry at a 95% confidence level.
Resumo:
The tendency of the aircraft industry is to enhance customer value by improving performance and reducing environmental impact. In view of availability, aluminum alloys have a historically tendency to faster insertion due to their lower manufacturing and operated production infrastructure. In landing gear components, wear and corrosion control of many components is accomplished by surface treatments of chrome electroplating on steel or anodizing of aluminum. One of the most interesting environmentally safer and cleaner alternatives for the replacement of hard chrome plating or anodizing is tungsten carbide thermal spray coating, applied by the high velocity oxy fuel (HVOF) process. However, it was observed that residual stresses originating from these coatings reduce the fatigue strength of a component.An effective process as shot peening treatment, considered to improve the fatigue strength, pushes the crack sources beneath the surface in most of medium and high cycle cases, due to the compressive residual stress field induced. The objective of this research is to evaluate a tungsten carbide cobalt (WC-Co) coating applied by the high velocity oxy fuel (HVOF) process, used to replace anodizing. Anodic films were grown on 7050-T7451 aluminum alloy by sulfuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on axial fatigue strength of anodic films grown on the aluminum alloy surface is to degrade the stress-life performance of the base material. Three groups of specimens were prepared and tested in axial fatigue to obtain S-N curves: base material, base material coated by HVOF and base material shot peened and coated.Experimental results revealed increase in the fatigue strength of Al 7050-T7451 alloy associated with the WC 17% Co coating. on the other hand, a reduction in fatigue life occurred in the shot peened and coated condition. Scanning electron microscopy technique and optical microscopy were used to observe crack origin sites, thickness and coating/substrate adhesion. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effect of copper and zinc ions on sulphur oxidation by Acidithiobacillus thiooxidans, strain SFR01, isolated from anaerobic sewage sludge was assessed, resulting in tolerance levels up to 20 and 200 mmol l(-1) for copper and zinc, respectively. The tolerance levels obtained were higher than the concentration of copper and zinc usually found in the collected sewage sludge. The tolerance levels obtained indicate no constraints for sludge bioleaching of those metals due to their toxicities to the indigenous A. thiooxidans.
Resumo:
Superoxide radical (O2-) is a free radical that may be involved in various toxic processes. Cu-Zn superoxide dismutase catalyses the dismutation of the superoxide free radical and protects cells from oxidative damage, and it has been used clinically. The concentration of Ni2+ and Cu-Zn superoxide dismutase activity were measured in lungs of rats at time intervals of 5, 12, 19, 26, 33, and 40 days following an intratracheal injection of 127 nmol of NiCl2. Nickel chloride increased nickel content and resulted in a significant increase of Cu-Zn superoxide dismutase activity in lungs. This elevation of Cu-Zn superoxide dismutase activity was highest on the 12th day (approximately threefold) and is at levels comparable to controls rats on day 40 onwards. Since Cu-Zn superoxide dismutase activity was increased in lung throughout our experimental period without corresponding increases of Cu2+ and Zn2+, we speculate that the elevation of Cu-Zn superoxide dismutase activity might be due to an increased half-life of the enzyme, induced by nickel.
Resumo:
Transverse-optical (TO) and longitudinal-optical (LO) phonons of zinc blende InxGa1-xN (0 less than or equal to x less than or equal to 0.31) layers are observed through first-order micro-Raman scattering experiments. The samples are grown by molecular-beam epitaxy on GaAs (001) substrates, and x-ray diffraction measurements are performed to determine the epilayer alloy composition. Both the TO and LO phonons exhibit a one-mode-type behavior, and their frequencies display a linear dependence on the composition. The Raman data reported here are used to predict the A(1) (TO) and E-1 (TO) phonon frequencies of the hexagonal InxGa1-xN alloy. (C) 1999 American Institute of Physics. [S0003-6951(99)01234-6].
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)