964 resultados para AVOIDING DIVERGENCE
Resumo:
"A key" at end has special t.-p.
Resumo:
Mode of access: Internet.
Resumo:
Tropidurid lizards have colonized a variety of Brazilian open environments without remarkable morphological variation, despite ecological and structural differences among habitats used. This study focuses on two Tropidurus sister-species that, despite systematic proximity and similar morphology, exhibit great ecological divergence and a third ecologically generalist congeneric species providing an outgroup comparison. We quantified jumping capacity and sprint speed of each species on sand and rock to test whether ecological divergence was also accompanied by differences in locomotor performance. Relevant physiological traits possibly associated with locomotor performance metabolic scopes and fiber type composition, power output and activity of the enzymes citrate synthase, pyruvate kinase and lactate dehydrogenase of the iliofibularis muscle - were also compared among the three Tropidurus species. We found that the two sister-species exhibited remarkable differences in jumping performance, while Tropidurus oreadicus, the more distantly related species, exhibited intermediate values. Tropidurus psamonastes, a species endemic to sand dunes, exhibited high absolute sprint speeds on sand, jumped rarely and possessed a high proportion of glycolytic fibers and low activity of citrate synthase. The sister-species Tropidurus itambere, endemic to rocky outcrops, performed a large number of jumps and achieved lower absolute sprint speed than T. psamonastes. This study provides evidence of rapid divergence of locomotor parameters between sister-species that use different substrates, which is only partially explained by variation in physiological parameters of the iliofibularis muscle.
Resumo:
Natural populations inhabiting the same environment often independently evolve the same phenotype. Is this replicated evolution a result of genetic constraints imposed by patterns of genetic covariation? We looked for associations between directions of morphological divergence and the orientation of the genetic variance-covariance matrix (G) by using an experimental system of morphological evolution in two allopatric nonsister species of rainbow fish. Replicate populations of both Melanotaenia eachamensis and Melanotaenia duboulayi have independently adapted to lake versus stream hydrodynamic environments. The major axis of divergence (z) among all eight study populations was closely associated with the direction of greatest genetic variance (g(max)), suggesting directional genetic constraint on evolution. However, the direction of hydrodynamic adaptation was strongly associated with vectors of G describing relatively small proportions of the total genetic variance, and was only weakly associated with g(max). In contrast, divergence between replicate populations within each habitat was approximately proportional to the level of genetic variance, a result consistent with theoretical predictions for neutral phenotypic divergence. Divergence between the two species was also primarily along major eigenvectors of G. Our results therefore suggest that hydrodynamic adaptation in rainbow fish was not directionally constrained by the dominant eigenvector of G. Without partitioning divergence as a consequence of the adaptation of interest (here, hydrodynamic adaptation) from divergence due to other processes, empirical studies are likely to overestimate the potential for the major eigenvectors of G to directionally constrain adaptive evolution.
Resumo:
To explore the evolutionary consequences of climate-induced fluctuations in distribution of rainforest habitat we contrasted demographic histories of divergence among three lineages of Australian rainforest endemic skinks. The red-throated rainbow skink, Carlia rubrigularis, consists of morphologically indistinguishable northern and southern mitochondrial DNA (mtDNA) lineages that are partially reproductively isolated at their parapatric boundary. The third lineage (C. rhomboidalis) inhabits rainforests just to the south of C. rubrigularis, has blue, rather than red-throated males, and for mtDNA is more closely related to southern C. rubrigularis than is northern C. rubrigularis. Multigene coalescent analyses supported more recent divergence between morphologically distinct lineages than between morphologically conservative lineages. There was effectively no migration and therefore stronger isolation between southern C. rubrigularis and C. rhomboidalis, and low unidirectional migration between morphologically conservative lineages of C. rubrigularis. We found little or no evidence for strong differences in effective population size, and hence different contributions of genetic drift in the demographic history of the three lineages. Overall the results suggest contrasting responses to long-term fluctuations in rainforest habitats, leading to varying opportunities for speciation.
Resumo:
This article compares the constitutive relationship between foreign policy and globalisation in Australia and New Zealand. Drawing upon insights from constructivist international relations theory we argue that foreign policy instantiates a state's social identity, its self-understanding of its role and moral purpose by projecting a distinctive image onto the global stage. We explore the differences and the similarities between Australia and New Zealand by examining how each country views international order, global trade, global governance and human rights and international security. Although both countries appear to be transforming themselves into more 'globalised' states, there are significant differences in the way each seeks to balance the competing strategic and normative demands. This diplomatic divergence, we argue, stems from different conceptions of state identity.
Resumo:
Multiple-sown field trials in 4 consecutive years in the Riverina region of south-eastern Australia provided 24 different combinations of temperature and day length, which enabled the development of crop phenology models. A crop model was developed for 7 cultivars from diverse origins to identify if photoperiod sensitivity is involved in determining phenological development, and if that is advantageous in avoiding low-temperature damage. Cultivars that were mildly photoperiod-sensitive were identified from sowing to flowering and from panicle initiation to flowering. The crop models were run for 47 years of temperature data to quantify the risk of encountering low temperature during the critical young microspore stage for 5 different sowing dates. Cultivars that were mildly photoperiod-sensitive, such as Amaroo, had a reduced likelihood of encountering low temperature for a wider range of sowing dates compared with photoperiod-insensitive cultivars. The benefits of increased photoperiod sensitivity include greater sowing flexibility and reduced water use as growth duration is shortened when sowing is delayed. Determining the optimal sowing date also requires other considerations, e. g. the risk of cold damage at other sensitive stages such as flowering and the response of yield to a delay in flowering under non-limiting conditions. It was concluded that appropriate sowing time and the use of photoperiod-sensitive cultivars can be advantageous in the Riverina region in avoiding low temperature damage during reproductive development.
Resumo:
Topological measures of large-scale complex networks are applied to a specific artificial regulatory network model created through a whole genome duplication and divergence mechanism. This class of networks share topological features with natural transcriptional regulatory networks. Specifically, these networks display scale-free and small-world topology and possess subgraph distributions similar to those of natural networks. Thus, the topologies inherent in natural networks may be in part due to their method of creation rather than being exclusively shaped by subsequent evolution under selection. The evolvability of the dynamics of these networks is also examined by evolving networks in simulation to obtain three simple types of output dynamics. The networks obtained from this process show a wide variety of topologies and numbers of genes indicating that it is relatively easy to evolve these classes of dynamics in this model. (c) 2006 Elsevier Ireland Ltd. All rights reserved.