982 resultados para 2ND ORDER PERIODIC PROBLEMS
Resumo:
El siguiente trabajo tiene como objetivo el Estado del arte acerca de la discusión teórica de la repercusión de la unión monetaria en el principio de soberanía nacional, específicamente el caso de Gran Bretaña, ya que éste es el único país que expresa abiertamente su incertidumbre referente a algún tipo de amenaza a su soberanía. Se pretende precisar si existen criterios concluyentes, o por el contrario determinar si no hay claridad con respecto al futuro de Gran Bretaña como miembro de la unión monetaria.A partir de lo anterior, se plantean como sus propósitos particulares construir un marco conceptual acerca de la soberanía. Este estado del arte se inicia con citas de los principales autores de finales de siglo XVII y XVIII y finaliza con las posiciones conceptuales aportadas por los teóricos modernos motivados por el nacimiento de la Unión Europea como un nuevo orden político. Entre las que se citan: modelo centrico o intergubernamentalista, modelo de gobernabilidad multi-nivel, modelo neo-funcionalista y modelo federalista. Igualmente, el trabajo, busca desarrollar un marco conceptual sobre Unión Monetaria y su evolución hasta el logro de una unión fiscal europea en el periodo de 1950-2010, establecer las relaciones teóricas entre Soberanía del Estado y Unión Monetaria y por último realizar un análisis histórico hermenéutico de la Unión Europea y el caso del Reino Unido de acuerdo a las relaciones evidenciadas en los apartados teóricos entre soberanía del Estado y Unión Monetaria.
Resumo:
El trastorno de hiperactividad y déficit de atención (THDA), es definido clínicamente como una alteración en el comportamiento, caracterizada por inatención, hiperactividad e impulsividad. Estos aspectos son clasificados en tres subtipos, que son: Inatento, hiperactivo impulsivo y mixto. Clínicamente se describe un espectro amplio que incluye desordenes académicos, trastornos de aprendizaje, déficit cognitivo, trastornos de conducta, personalidad antisocial, pobres relaciones interpersonales y aumento de la ansiedad, que pueden continuar hasta la adultez. A nivel global se ha estimado una prevalencia entre el 1% y el 22%, con amplias variaciones, dadas por la edad, procedencia y características sociales. En Colombia, se han realizado estudios en Bogotá y Antioquia, que han permitido establecer una prevalencia del 5% y 15%, respectivamente. La causa específica no ha sido totalmente esclarecida, sin embargo se ha calculado una heredabilidad cercana al 80% en algunas poblaciones, demostrando el papel fundamental de la genética en la etiología de la enfermedad. Los factores genéticos involucrados se relacionan con cambios neuroquímicos de los sistemas dopaminérgicos, serotoninérgicos y noradrenérgicos, particularmente en los sistemas frontales subcorticales, corteza cerebral prefrontal, en las regiones ventral, medial, dorsolateral y la porción anterior del cíngulo. Basados en los datos de estudios previos que sugieren una herencia poligénica multifactorial, se han realizado esfuerzos continuos en la búsqueda de genes candidatos, a través de diferentes estrategias. Particularmente los receptores Alfa 2 adrenérgicos, se encuentran en la corteza cerebral, cumpliendo funciones de asociación, memoria y es el sitio de acción de fármacos utilizados comúnmente en el tratamiento de este trastorno, siendo esta la principal evidencia de la asociación de este receptor con el desarrollo del THDA. Hasta la fecha se han descrito más de 80 polimorfismos en el gen (ADRA2A), algunos de los cuales se han asociado con la entidad. Sin embargo, los resultados son controversiales y varían según la metodología diagnóstica empleada y la población estudiada, antecedentes y comorbilidades. Este trabajo pretende establecer si las variaciones en la secuencia codificante del gen ADRA2A, podrían relacionarse con el fenotipo del Trastorno de Hiperactividad y el Déficit de Atención.
Resumo:
El presente Trabajo de Grado busca caracterizar la cultura organizacional de una empresa del sector Financiero en Colombia y realizar orientaciones de acciones para el cambio organizacional de acuerdo con la estrategia de perdurabilidad establecida por la Alta Dirección de dicha empresa. Para este fin, se realiza una cuidadosa revisión y actualización del estado del arte de los conceptos clave ¨Cultura Organizacional¨ y ¨Cambio Organizacional¨. Es de resaltar que para el primero de ellos, se toma como punto de partida el estado del arte sobre Cultura Organizacional realizado por el profesor Carlos Eduardo Méndez Álvarez y cuyo marco temporal abarca desde los orígenes del concepto en el siglo XIX hasta el año 2006. Asimismo, luego de una cuidadosa revisión de los Modelos de Cambio Organizacional existentes y de la realidad de la empresa objeto de estudio, se adopta el Modelo ADKAR que consta de cinco fases: Conciencia del Cambio, Deseo, Conocimiento, Capacidad – Habilidad y Refuerzo. Asimismo, a partir de la construcción de un fundamento teórico sólido y a través de la aplicación de la metodología para describir la Cultura Organizacional en Colombia MEDECO se busca una aproximación a la Cultura Organizacional de la empresa objeto de estudio con el fin de describir e identificar los rasgos predominantes de su cultura organizacional y entregar una propuesta final con los rasgos necesarios que alientan la consecución exitosa de los procesos de cambio.
Resumo:
En problemes d'assignació de recursos, normalment s'han de tenir en compte les incerteses que poden provocar canvis en les dades inicials. Aquests canvis dificulten l'aplicabilitat de les planificacions que s'hagin fet inicialment. Aquesta tesi se centra en l'elaboració de tècniques que consideren la incertesa alhora de cercar solucions robustes, és a dir solucions que puguin continuar essent vàlides encara que hi hagi canvis en l'entorn. Particularment, introduïm el concepte de robustesa basat en reparabilitat, on una solució robusta és una que pot ser reparada fàcilment en cas que hi hagi incidències. La nostra aproximació es basa en lògica proposicional, codificant el problema en una fórmula de satisfactibilitat Booleana, i aplicant tècniques de reformulació per a la generació de solucions robustes. També presentem un mecanisme per a incorporar flexibilitat a les solucions robustes, de manera que es pugui establir fàcilment el grau desitjat entre robustesa i optimalitat de les solucions.
Resumo:
El sistema de fangs activats és el tractament biològic més àmpliament utilitzat arreu del món per la depuració d'aigües residuals. El seu funcionament depèn de la correcta operació tant del reactor biològic com del decantador secundari. Quan la fase de sedimentació no es realitza correctament, la biomassa no decantada s'escapa amb l'efluent causant un impacte sobre el medi receptor. Els problemes de separació de sòlids, són actualment una de les principals causes d'ineficiència en l'operació dels sistemes de fangs activats arreu del món. Inclouen: bulking filamentós, bulking viscós, escumes biològiques, creixement dispers, flòcul pin-point i desnitrificació incontrolada. L'origen dels problemes de separació generalment es troba en un desequilibri entre les principals comunitats de microorganismes implicades en la sedimentació de la biomassa: els bacteris formadors de flòcul i els bacteris filamentosos. Degut a aquest origen microbiològic, la seva identificació i control no és una tasca fàcil pels caps de planta. Els Sistemes de Suport a la Presa de Decisions basats en el coneixement (KBDSS) són un grup d'eines informàtiques caracteritzades per la seva capacitat de representar coneixement heurístic i tractar grans quantitats de dades. L'objectiu de la present tesi és el desenvolupament i validació d'un KBDSS específicament dissenyat per donar suport als caps de planta en el control dels problemes de separació de sòlids d'orígen microbiològic en els sistemes de fangs activats. Per aconseguir aquest objectiu principal, el KBDSS ha de presentar les següents característiques: (1) la implementació del sistema ha de ser viable i realista per garantir el seu correcte funcionament; (2) el raonament del sistema ha de ser dinàmic i evolutiu per adaptar-se a les necessitats del domini al qual es vol aplicar i (3) el raonament del sistema ha de ser intel·ligent. En primer lloc, a fi de garantir la viabilitat del sistema, s'ha realitzat un estudi a petita escala (Catalunya) que ha permès determinar tant les variables més utilitzades per a la diagnosi i monitorització dels problemes i els mètodes de control més viables, com la detecció de les principals limitacions que el sistema hauria de resoldre. Els resultats d'anteriors aplicacions han demostrat que la principal limitació en el desenvolupament de KBDSSs és l'estructura de la base de coneixement (KB), on es representa tot el coneixement adquirit sobre el domini, juntament amb els processos de raonament a seguir. En el nostre cas, tenint en compte la dinàmica del domini, aquestes limitacions es podrien veure incrementades si aquest disseny no fos òptim. En aquest sentit, s'ha proposat el Domino Model com a eina per dissenyar conceptualment el sistema. Finalment, segons el darrer objectiu referent al seguiment d'un raonament intel·ligent, l'ús d'un Sistema Expert (basat en coneixement expert) i l'ús d'un Sistema de Raonament Basat en Casos (basat en l'experiència) han estat integrats com els principals sistemes intel·ligents encarregats de dur a terme el raonament del KBDSS. Als capítols 5 i 6 respectivament, es presenten el desenvolupament del Sistema Expert dinàmic (ES) i del Sistema de Raonament Basat en Casos temporal, anomenat Sistema de Raonament Basat en Episodis (EBRS). A continuació, al capítol 7, es presenten detalls de la implementació del sistema global (KBDSS) en l'entorn G2. Seguidament, al capítol 8, es mostren els resultats obtinguts durant els 11 mesos de validació del sistema, on aspectes com la precisió, capacitat i utilitat del sistema han estat validats tant experimentalment (prèviament a la implementació) com a partir de la seva implementació real a l'EDAR de Girona. Finalment, al capítol 9 s'enumeren les principals conclusions derivades de la present tesi.
Resumo:
The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants, the algorithm is attractive because it does not require the evaluation of second-order derivatives in the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive to apply operationally in meteorological forecasting, and various approximations are made in order to reduce computational costs and to solve the problems in real time. Here we investigate the effects on the convergence of the Gauss–Newton method of two types of approximation used commonly in data assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods where the true linearized inner problem is approximated by a simplified, or perturbed, linear least squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton methods converge and also derive rates of convergence for the iterations. The results are illustrated by a simple numerical example. A practical application to the problem of data assimilation in a typical meteorological system is presented.
Resumo:
For the very large nonlinear dynamical systems that arise in a wide range of physical, biological and environmental problems, the data needed to initialize a numerical forecasting model are seldom available. To generate accurate estimates of the expected states of the system, both current and future, the technique of ‘data assimilation’ is used to combine the numerical model predictions with observations of the system measured over time. Assimilation of data is an inverse problem that for very large-scale systems is generally ill-posed. In four-dimensional variational assimilation schemes, the dynamical model equations provide constraints that act to spread information into data sparse regions, enabling the state of the system to be reconstructed accurately. The mechanism for this is not well understood. Singular value decomposition techniques are applied here to the observability matrix of the system in order to analyse the critical features in this process. Simplified models are used to demonstrate how information is propagated from observed regions into unobserved areas. The impact of the size of the observational noise and the temporal position of the observations is examined. The best signal-to-noise ratio needed to extract the most information from the observations is estimated using Tikhonov regularization theory. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
We consider boundary value problems posed on an interval [0,L] for an arbitrary linear evolution equation in one space dimension with spatial derivatives of order n. We characterize a class of such problems that admit a unique solution and are well posed in this sense. Such well-posed boundary value problems are obtained by prescribing N conditions at x=0 and n–N conditions at x=L, where N depends on n and on the sign of the highest-degree coefficient n in the dispersion relation of the equation. For the problems in this class, we give a spectrally decomposed integral representation of the solution; moreover, we show that these are the only problems that admit such a representation. These results can be used to establish the well-posedness, at least locally in time, of some physically relevant nonlinear evolution equations in one space dimension.
Resumo:
In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue problems. We restrict our consideration to real symmetric matrices. Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the structure of both - systematic and probability error are presented. It is shown that the values of both errors can be controlled independently by different algorithmic parameters. The results present how the systematic error depends on the matrix spectrum. The analysis of the probability error is presented. It shows that the close (in some sense) the matrix under consideration is to the stochastic matrix the smaller is this error. Sufficient conditions for constructing robust and interpolation Monte Carlo algorithms are obtained. For stochastic matrices an interpolation Monte Carlo algorithm is constructed. A number of numerical tests for large symmetric dense matrices are performed in order to study experimentally the dependence of the systematic error from the structure of matrix spectrum. We also study how the probability error depends on the balancing of the matrix. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
We study boundary value problems for a linear evolution equation with spatial derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T, with L and T positive nite constants. We present a general method for identifying well-posed problems, as well as for constructing an explicit representation of the solution of such problems. This representation has explicit x and t dependence, and it consists of an integral in the k-complex plane and of a discrete sum. As illustrative examples we solve some two-point boundary value problems for the equations iqt + qxx = 0 and qt + qxxx = 0.
Resumo:
This paper represents the last technical contribution of Professor Patrick Parks before his untimely death in February 1995. The remaining authors of the paper, which was subsequently completed, wish to dedicate the article to Patrick. A frequency criterion for the stability of solutions of linear difference equations with periodic coefficients is established. The stability criterion is based on a consideration of the behaviour of a frequency hodograph with respect to the origin of coordinates in the complex plane. The formulation of this criterion does not depend on the order of the difference equation.
Resumo:
The combination of the synthetic minority oversampling technique (SMOTE) and the radial basis function (RBF) classifier is proposed to deal with classification for imbalanced two-class data. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is applied to generate synthetic instances for the positive class to balance the training data set. Based on the over-sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier structure and the parameters of RBF kernels are determined using a particle swarm optimization algorithm based on the criterion of minimizing the leave-one-out misclassification rate. The experimental results on both simulated and real imbalanced data sets are presented to demonstrate the effectiveness of our proposed algorithm.
Resumo:
This contribution proposes a powerful technique for two-class imbalanced classification problems by combining the synthetic minority over-sampling technique (SMOTE) and the particle swarm optimisation (PSO) aided radial basis function (RBF) classifier. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is applied to generate synthetic instances for the positive class to balance the training data set. Based on the over-sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier's structure and the parameters of RBF kernels are determined using a PSO algorithm based on the criterion of minimising the leave-one-out misclassification rate. The experimental results obtained on a simulated imbalanced data set and three real imbalanced data sets are presented to demonstrate the effectiveness of our proposed algorithm.
Resumo:
Identifying a periodic time-series model from environmental records, without imposing the positivity of the growth rate, does not necessarily respect the time order of the data observations. Consequently, subsequent observations, sampled in the environmental archive, can be inversed on the time axis, resulting in a non-physical signal model. In this paper an optimization technique with linear constraints on the signal model parameters is proposed that prevents time inversions. The activation conditions for this constrained optimization are based upon the physical constraint of the growth rate, namely, that it cannot take values smaller than zero. The actual constraints are defined for polynomials and first-order splines as basis functions for the nonlinear contribution in the distance-time relationship. The method is compared with an existing method that eliminates the time inversions, and its noise sensitivity is tested by means of Monte Carlo simulations. Finally, the usefulness of the method is demonstrated on the measurements of the vessel density, in a mangrove tree, Rhizophora mucronata, and the measurement of Mg/Ca ratios, in a bivalve, Mytilus trossulus.