280 resultados para 111200
Resumo:
BACKGROUND Hydrogel-based cell cultures are excellent tools for studying physiological events occurring in the growth and proliferation of cells, including cancer cells. Diffusion magnetic resonance is a physical technique that has been widely used for the characterisation of biological systems as well as hydrogels. In this work, we applied diffusion magnetic resonance imaging (MRI) to hydrogel-based cultures of human ovarian cancer cells. METHODS Diffusion-weighted spin-echo MRI measurements were used to obtain spatially-resolved maps of apparent diffusivities for hydrogel samples with different compositions, cell loads and drug (Taxol) treatment regimes. The samples were then characterised using their diffusivity histograms, mean diffusivities and the respective standard deviations, and pairwise Mann-Whitney tests. The elastic moduli of the samples were determined using mechanical compression testing. RESULTS The mean apparent diffusivity of the hydrogels was sensitive to the polymer content, cell load and Taxol treatment. For a given sample composition, the mean apparent diffusivity and the elastic modulus of the hydrogels exhibited a negative correlation. CONCLUSIONS Diffusivity of hydrogel-based cancer cell culture constructs is sensitive to both cell proliferation and Taxol treatment. This suggests that diffusion-weighted imaging is a promising technique for non-invasive monitoring of cancer cell proliferation in hydrogel-based, cellularly-sparse 3D cell cultures. The negative correlation between mean apparent diffusivity and elastic modulus suggests that the diffusion coefficient is indicative of the average density of the physical microenvironment within the hydrogel construct.
Resumo:
The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.
Resumo:
BACKGROUND: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical. METHODS: We performed a genome-wide survival analysis of cause-specific death in 24,023 prostate cancer patients (3,513 disease-specific deaths) from the PRACTICAL and BPC3 consortia. Top findings were assessed for replication in a Norwegian cohort (CONOR). RESULTS: We observed no significant association between genetic variants and prostate cancer survival. CONCLUSIONS: Common genetic variants with large impact on prostate cancer survival were not observed in this study. IMPACT: Future studies should be designed for identification of rare variants with large effect sizes or common variants with small effect sizes.
Resumo:
BACKGROUND Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction. METHODS We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls. RESULTS The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk. CONCLUSIONS Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction. Prostate 75:1467–1474, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Background Epidemiological studies suggest a potential role for obesity and determinants of adult stature in prostate cancer risk and mortality, but the relationships described in the literature are complex. To address uncertainty over the causal nature of previous observational findings, we investigated associations of height- and adiposity-related genetic variants with prostate cancer risk and mortality. Methods We conducted a case–control study based on 20,848 prostate cancers and 20,214 controls of European ancestry from 22 studies in the PRACTICAL consortium. We constructed genetic risk scores that summed each man’s number of height and BMI increasing alleles across multiple single nucleotide polymorphisms robustly associated with each phenotype from published genome-wide association studies. Results The genetic risk scores explained 6.31 and 1.46 % of the variability in height and BMI, respectively. There was only weak evidence that genetic variants previously associated with increased BMI were associated with a lower prostate cancer risk (odds ratio per standard deviation increase in BMI genetic score 0.98; 95 % CI 0.96, 1.00; p = 0.07). Genetic variants associated with increased height were not associated with prostate cancer incidence (OR 0.99; 95 % CI 0.97, 1.01; p = 0.23), but were associated with an increase (OR 1.13; 95 % CI 1.08, 1.20) in prostate cancer mortality among low-grade disease (p heterogeneity, low vs. high grade <0.001). Genetic variants associated with increased BMI were associated with an increase (OR 1.08; 95 % CI 1.03, 1.14) in all-cause mortality among men with low-grade disease (p heterogeneity = 0.03). Conclusions We found little evidence of a substantial effect of genetically elevated height or BMI on prostate cancer risk, suggesting that previously reported observational associations may reflect common environmental determinants of height or BMI and prostate cancer risk. Genetically elevated height and BMI were associated with increased mortality (prostate cancer-specific and all-cause, respectively) in men with low-grade disease, a potentially informative but novel finding that requires replication.
Resumo:
Despite positive testing in animal studies, more than 80% of novel drug candidates fail to proof their efficacy when tested in humans. This is primarily due to the use of preclinical models that are not able to recapitulate the physiological or pathological processes in humans. Hence, one of the key challenges in the field of translational medicine is to “make the model organism mouse more human.” To get answers to questions that would be prognostic of outcomes in human medicine, the mouse's genome can be altered in order to create a more permissive host that allows the engraftment of human cell systems. It has been shown in the past that these strategies can improve our understanding of tumor immunology. However, the translational benefits of these platforms have still to be proven. In the 21st century, several research groups and consortia around the world take up the challenge to improve our understanding of how to humanize the animal's genetic code, its cells and, based on tissue engineering principles, its extracellular microenvironment, its tissues, or entire organs with the ultimate goal to foster the translation of new therapeutic strategies from bench to bedside. This article provides an overview of the state of the art of humanized models of tumor immunology and highlights future developments in the field such as the application of tissue engineering and regenerative medicine strategies to further enhance humanized murine model systems.
Resumo:
Kallikrein-related peptidase 4 (KLK4) is a protease with elevated production in prostate cancer versus benign tissue. KLK4 expression is associated with prostate cancer risk, and its activity favours tumour progression through increasing cell motility and growth. Importantly, over-production of KLK4 in prostate glandular cells precedes tumour formation, positioning the enzyme to play a role in early remodelling of the tumour microenvironment, a process essential for tumour growth. We sought to identify the proteins and downstream signalling pathways targeted by KLK4 activity, to define its role in tumour microenvironment remodelling and evaluate the efficacy of KLK4 inhibition as a cancer therapy.
Resumo:
In castrate-resistant prostate cancer (CRPC), the prevailing organ for metastasis is bone, where the survival of cancer cells is regulated by the permissive metastatic niche offered by the bone marrow. The tumour microenvironment and cellular interactions with the matrix and bone cells enable metastasis and lead to cancer cells becoming androgen resistant. Hence, 3D models that mimic CRPC in terms of an androgen deprivation state (ADS) are needed to identify the mechanisms for CPRC growth in bone and further develop therapeutic strategies.
Resumo:
Androgen targeted therapies (ATT) are the most commonly used treatments in prostate cancer (PCa).While these therapies are initially effective, PCa cells are able to activate adaptive response pathways to survive these therapies and progress to castration resistant PCa (CRPC), a highly aggressive and ultimately lethal stage of the disease. Neuroendocrine transdifferentiation (NEtD), a process whereby PCa cells gain neuroendocrinelike characteristics, has been implicated in the development of CRPC. The objective of this study is to develop and characterise models of therapy-induced NEtD to investigate the role of this adaptive plasticity in the progression to CRPC.
Resumo:
An adolescent and young adult (AYA) cancer patient is defined as an individual of 15 to 39 years of age at the time of initial cancer diagnosis.1,2 The number of AYA cancer survivors has dramatically increased over the past decades due to availability of novel therapeutics, with the 5-year overall survival rate among adolescents aged 15 to 19 years old exceeds 80% for most cancers.3 AYA cancer survivors, however, often experience a myriad of treatment-related chronic and late toxicities that can lead to functional impairment at great economic, emotional and social cost.4 As the cure rates of AYA cancers continue to improve and survivors live longer, post-treatment health issues in these survivors are becoming increasingly relevant, and more in-depth research is needed in this group of patients...