995 resultados para water channels
Resumo:
The aim of this study was to use DSC and X-ray diffraction measurements to determine the pore size and pore wall thickness of highly ordered SBA-15 materials. The DSC curves showed two endothermic events during the heating cycle. These events were due to the presence of water inside and outside of mesopores. The results of pore radius, wall thickness and pore volume measurements were in good agreement with the results obtained by nitrogen adsorption measurement, XRD and transmission electron microscopy.
Resumo:
We investigated the mechanism by which extracellular acidification promotes relaxation in rat thoracic aorta. The relaxation response to HCl-induced extracellular acidification (7.4 to 6.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M) or KCl (45 mM). The vascular reactivity experiments were performed in endothelium-intact and denuded rings, in the presence or absence of indomethacin (10(-5) M), L-NAME (10(-4) M), apamin (10(-6) M), and glibenclamide (10(-5) M). The effect of extracellular acidosis (pH 7.0 and 6.5) on nitric oxide (NO) production was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 mu M). The extracellular acidosis failed to induce any changes in the vascular tone of aortic rings pre-contracted with KCl, however, it caused endothelium-dependent and independent relaxation in rings pre-contracted with Phe. This acidosis induced-relaxation was inhibited by L-NAME, apamin, and glibenclamide, but not by indomethacin. The acidosis (pH 7.0 and 6.5) also promoted a time-dependent increase in the NO production by the isolated endothelial cells. These results suggest that extracellular acidosis promotes vasodilation mediated by NO, K(ATP) and SK(Ca), and maybe other K(+) channels in isolated rat thoracic aorta. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Sao Paulo state, Brazil, is one of the main areas of sugar cane agriculture in the world. Herbicides, in particular, ametryn, are extensively used in this extensive area, which implies that this herbicide is present in the environment and can contaminate the surface water by running off. Thereby, residues of ametryn were analyzed in samples of river water an river sediment and in freshwater bivalves obtained from the rivers Sapucai, Pardo and Mogi-Guacu in Sao Paulo State, Brazil. Samples were taken in the winter of 2003 and 2004 in two locations in each river. The specimens of freshwater bivalves collected and analyzed were Corbicula fluminea, an exotic species, and Diplodon fontaineanus, a native species. Additionally, the evaluation of the ability of bioconcentration and depuration of ametryn by the freshwater bivalve Corbicula fluminea was also performed. Ametryn concentrations in the samples were measured by liquid chromatography coupled to mass spectrometry. Residues of ametryn in water (50 ng/L) and in freshwater bivalves (2-7 ng/g) were found in the Mogi-Guacu River in 2004, and residues in river sediments were found in all rivers in 2003 and 2004 (0.5-2 ng/g). The observation of the aquatic environment through the analysis of these matrixes, water, sediment, and bivalves, revealed the importance of the river sediment in the accumulation of the herbicide ametryn, which can contaminate the biota.
Resumo:
This study aimed to evaluate the chemical composition of Baccharis dracunculifolia essential oil and the water soluble oil obtained by steam distillation that were analyzed by GC and GUMS. in the first hour of distillation, B. dracunculifolia aerial parts yielded 0.08% oil and in the second hour, 0.27%. The oil recovered from the distillate water yielded 0.18 g/L in the first hour and 0.44 g/L in the second hour of distillation. The main volatile compounds identified in the distillate water were aromatic compounds and sesquiterpene alcohols.
Resumo:
Background: The effectiveness of a water/oil (w/o) microemulsion containing quercetin against ultraviolet B radiation (UVB) induced damage was recently demonstrated by our group. However, during the development of new pharmaceutical products, the evaluation of percutaneous absorption and in vivo effectiveness should be accompanied by evaluation of stability parameters as an integral part of the process. Objective: The aim was to investigate the stability of the final microemulsion formulation considering the temperature ranges of storage and application. Methods: The physical, chemical, and functional stability of this formulation under different conditions of storage during 12 months and the photostability of quercetin incorporated into this system over UVB exposure for 7 days were evaluated. Results: Although the results indicated a notable physical stability of the w/o microemulsions during the experimental period under all employed conditions, in both, the chemical and functional studies, a significant loss of quercetin content and antioxidant activity was found after 6 months of storage at 30 degrees C/70% relative humidity and after 2 months at 40 degrees C/70% relative humidity. The photostability study results demonstrated that the incorporation of quercetin into the w/o microemulsion maintained the previously demonstrated photostability of this flavonoid under forced exposure to UVB irradiation. Conclusion: Thus, this work demonstrates that special storage conditions (at 4 +/- 2 degrees C) are necessary to maintain the functionality of the w/o microemulsion containing quercetin and mainly emphasizes the importance of studying physical, chemical, and functional parameters at the same time during stability evaluation of active principles.
Resumo:
The aim of this work was to study the behaviour of conventional spouted beds during water evaporation and to analyze the pressure fluctuations at the maximum water evaporative capacity for different bed heights and air flow rates. The results showed that spout pressure drop could not indicate the proximity of maximum evaporative capacity; however this condition is denoted by a minimum in fountain height. The standard deviation and amplitude of the pressure fluctuations also showed a minimum point at the maximum water evaporation capacity. The frequency domain analysis of pressure fluctuations revealed that the dry bed has a dominant frequency varying from 6 to 8.2 Hz and that the peak of dominant frequency tends to disappear with the increase in water feed rate.
Resumo:
2,6-Dichloro-4-nitroaniline (dicloran) is a mutagenic aromatic amine used as an agricultural fungicide and in the synthesis of disperse dyes. It is a known mutagen (Salmonella/microsome assay) in strains TA98 and TA100. Dicloran was initially detected, but not quantified, in the Cristais River, Brazil. The objective of the present study was to estimate the contribution of dicloran to mutagenic activity in samples from this river. Dicloran was found in the raw water at 0.14 mu g/L but not in the treated water. Comparison of mutagenic potencies in Salmonella strain YG1041 for dicloran and the river water sample indicated that dicloran contributed less than 0.1% of total mutagenic activity.
Resumo:
Objective. To investigate the modes of water supply and the perception concerning the problems caused by this water among residents of a neighborhood without public supply of water, settled in an area previously used as a garbage dump in the city of Manaus, Brazil. Methods. One hundred and sixty-two semi-structured household interviews were conducted. In addition, a focal group with teachers from a local public school and a meeting with residents were held. The instruments employed focused on the perception and modes of water use and on the process of exposure to chemical contaminants through water. Results. Untreated well water was used by most families. This water was considered to be ""good"" by 64.8% of the individuals interviewed. Most residents (88.3%) declared knowledge about the garbage dump. Of these, 77.6% stated that the garbage dump caused health and environmental problems. However, qualitative analysis of the responses revealed that the residents were not aware of contamination by chemical elements or of the consequences of such contamination. The activities carried out with teachers revealed that they were partially aware of the problem, but did not design interventions to address the issue. In a meeting with neighborhood residents, the presence of social activism concerning the problem was identified, but it did not extend beyond the neighborhood or reach governmental spheres. Conclusions. The study identified a situation of critical exposure that tends to be maintained as a result of misperceptions and lack of social mobilization. The dissemination of research results to teachers and residents was useful to empower subjects.
Resumo:
Evidence is presented for the existence of a countercurrent flow between water and blood at the respiratory surfaces of the Port Jackson shark gill.
Resumo:
In high-velocity open channel flows, the measurements of air-water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air-water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8 E+5 to 7.1 E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air-water depth Y90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95 to 0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow.
Resumo:
Durante las últimas tres décadas el interés y diversidad en el uso de canales escalonados han aumentado debido al desarrollo de nuevas técnicas y materiales que permiten su construcción de manera rápida y económica (Concreto compactado con rodillo CCR, Gaviones, etc.). Actualmente, los canales escalonados se usan como vertedores y/o canales para peces en presas y diques, como disipadores de energía en canales y ríos, o como aireadores en plantas de tratamiento y torrentes contaminados. Diversos investigadores han estudiado el flujo en vertedores escalonados, enfocándose en estructuras de gran pendiente ( 45o) por lo que a la fecha, el comportamiento del flujo sobre vertedores con pendientes moderadas ( 15 a 30o) no ha sido totalmente comprendido. El presente artículo comprende un estudio experimental de las propiedades físicas del flujo aire-agua sobre canales escalonados con pendientes moderadas, típicas en presas de materiales sueltos. Un extenso rango de gastos en condiciones de flujo rasante se investigó en dos modelos experimentales a gran escala (Le = 3 a 6): Un canal con pendiente 3.5H:1V ( 16o) y dos alturas de escalón distintas (h = 0.1 y 0.05 m) y un canal con pendiente 2.5H:1V ( 22o) y una altura de escalón de h = 0.1 m. Los resultados incluyen un análisis detallado de las propiedades del flujo en vertedores escalonados con pendientes moderadas y un nuevo criterio de diseño hidráulico, el cual está basado en los resultados experimentales obtenidos. English abstract: Stepped chutes have been used as hydraulic structures since antiquity, they can be found acting as spillways and fish ladders in dams and weirs, as energy dissipators in artificial channels, gutters and rivers, and as aeration enhancers in water treatment plants and polluted streams. In recent years, new construction techniques and materials (Roller Compacted Concrete RCC, rip-rap gabions, etc.) together with the development of the abovementioned new applications have allowed cheaper construction methods, increasing the interest in stepped chute design. During the last three decades, research in stepped spillways has been very active. However, studies prior to 1993 neglected the effect of free-surface aeration. A number of studies have focused since on steep stepped chutes ( 45o) but the hydraulic performance of moderate-slope stepped channels is not yet totally understood. This study details an experimental investigation of physical air-water flow properties down moderate slope stepped spillways conducted in two laboratory models: the first model was a 3.15 m long stepped chute with a 15.9o slope comprising two interchangeable step heights (h = 0.1 m and h = 0.05 m); the second model was a 3.3 m long, stepped channel with a 21.8o slope (h = 0.1 m). A broad range of discharges within transition and skimming flow regimes was investigated. Measurements were conducted using a double tip conductivity probe. The study provides new, original insights into air-water stepped chute flows not foreseen in prior studies and presents a new design criterion for chutes with moderate slopes based on the experimental results.
Resumo:
Skimming flows on stepped spillways are characterised by a significant rate of turbulent dissipation on the chute. Herein an advanced signal processing of traditional conductivity probe signals is developed to provide further details on the turbulent time and length scales. The technique is applied to a 22° stepped chute operating with flow Reynolds numbers between 3.8 and 7.1 E+5. The new correlation analyses yielded a characterisation of large eddies advecting the bubbles. The turbulent length scales were related to the characteristic depth Y90. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level, and turbulence time and length scales. The self-similarity results were significant because they provided a picture general enough to be used to characterise the air-water flow field in prototype spillways.