899 resultados para vector filtering
Resumo:
The paper presents an adaptive Fourier filtering technique and a relaying scheme based on a combination of a digital band-pass filter along with a three-sample algorithm, for applications in high-speed numerical distance protection. To enhance the performance of above-mentioned technique, a high-speed fault detector has been used. MATLAB based simulation studies show that the adaptive Fourier filtering technique provides fast tripping for near faults and security for farther faults. The digital relaying scheme based on a combination of digital band-pass filter along with three-sample data window algorithm also provides accurate and high-speed detection of faults. The paper also proposes a high performance 16-bit fixed point DSP (Texas Instruments TMS320LF2407A) processor based hardware scheme suitable for implementation of the above techniques. To evaluate the performance of the proposed relaying scheme under steady state and transient conditions, PC based menu driven relay test procedures are developed using National Instruments LabVIEW software. The test signals are generated in real time using LabVIEW compatible analog output modules. The results obtained from the simulation studies as well as hardware implementations are also presented.
Resumo:
Two models for large eddy simulation of turbulent reacting flow in homogeneous turbulence were studied. The sub-grid stress arising out of non-linearities of the Navier-Stokes equations were modeled using an explicit filtering approach. A filtered mass density function (FMDF) approach was used for closure of the sub-grid scalar fluctuations. A posteriori calculations, when compared with the results from the direct numerical simulation, indicate that the explicit filtering is adequate in representing the effect of sub-grid stress on the filtered velocity field in the absence of reaction. Discrepancies arise when reactions occur, but the FMDF approach suffices to account for sub-grid scale fluctuations of the reacting scalars, accurately.
Resumo:
We recast the reconstruction problem of diffuse optical tomography (DOT) in a pseudo-dynamical framework and develop a method to recover the optical parameters using particle filters, i.e., stochastic filters based on Monte Carlo simulations. In particular, we have implemented two such filters, viz., the bootstrap (BS) filter and the Gaussian-sum (GS) filter and employed them to recover optical absorption coefficient distribution from both numerically simulated and experimentally generated photon fluence data. Using either indicator functions or compactly supported continuous kernels to represent the unknown property distribution within the inhomogeneous inclusions, we have drastically reduced the number of parameters to be recovered and thus brought the overall computation time to within reasonable limits. Even though the GS filter outperformed the BS filter in terms of accuracy of reconstruction, both gave fairly accurate recovery of the height, radius, and location of the inclusions. Since the present filtering algorithms do not use derivatives, we could demonstrate accurate contrast recovery even in the middle of the object where the usual deterministic algorithms perform poorly owing to the poor sensitivity of measurement of the parameters. Consistent with the fact that the DOT recovery, being ill posed, admits multiple solutions, both the filters gave solutions that were verified to be admissible by the closeness of the data computed through them to the data used in the filtering step (either numerically simulated or experimentally generated). (C) 2011 Optical Society of America
Resumo:
This paper presents an algorithm for control of line side voltage of a voltage source inverter upto six-step mode. This is a modified version of an existing overmodulation algorithm. The modified algorithm maintains proportionality between the reference voltage and the output fundamental voltage, and also reduces the computational effort required for implementation, while resulting in a marginally higher harmonic distortion. An estimation method is proposed for calculation of lower order ripple current. This estimation method is applied to a sensorless vector controlled induction motor drive to improve the performance of the drive during overmodulation.
Resumo:
This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.
Resumo:
Image filtering techniques have numerous potential applications in biomedical imaging and image processing. The design of filters largely depends on the a-priori knowledge about the type of noise corrupting the image and image features. This makes the standard filters to be application and image specific. The most popular filters such as average, Gaussian and Wiener reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design filters based on discrete cosine transform (DCT) is proposed in this study for optimal medical image filtering. This algorithm exploits the better energy compaction property of DCT and re-arrange these coefficients in a wavelet manner to get the better energy clustering at desired spatial locations. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions.
Resumo:
Concern over changes in global climate has increased in recent years with improvement in understanding of atmospheric dynamics and growth in evidence of climate link to long‐term variability in hydrologic records. Climate impact studies rely on climate change information at fine spatial resolution. Towards this, the past decade has witnessed significant progress in development of downscaling models to cascade the climate information provided by General Circulation Models (GCMs) at coarse spatial resolution to the scale relevant for hydrologic studies. While a plethora of downscaling models have been applied successfully to mid‐latitude regions, a few studies are available on tropical regions where the atmosphere is known to have more complex behavior. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling to interpret climate change signals provided by GCMs over tropical regions of India. Climate variables affecting spatio‐temporal variation of precipitation at each meteorological sub‐division of India are identified. Following this, cluster analysis is applied on climate data to identify the wet and dry seasons in each year. The data pertaining to climate variables and precipitation of each meteorological sub‐division is then used to develop SVM based downscaling model for each season. Subsequently, the SVM based downscaling model is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to assess the impact of climate change on hydrological inputs to the meteorological sub‐divisions. The results obtained from the SVM downscaling model are then analyzed to assess the impact of climate change on precipitation over India.
Resumo:
A three-level inverter produces six active vectors, each of normalized magnitudes 1, 0.866, and 0.5, besides a zero vector. The vectors of relative length 0.5 are termed pivot vectors.The three nearest voltage vectors are usually used to synthesize the reference vector. In most continuous pulsewidth-modulation(PWM) schemes, the switching sequence begins from a pivot vector and ends with the same pivot vector. Thus, the pivot vector is applied twice in a subcycle or half-carrier cycle. This paper proposes and investigates alternative switching sequences, which use the pivot vector only once but employ one of the other two vectors twice within the subcycle. The total harmonic distortion(THD) in the fundamental line current pertaining to these novel sequences is studied theoretically as well as experimentally over the whole range of modulation. Compared with centered space vector PWM, two of the proposed sequences lead to reduced THD at high modulation indices at a given average switching frequency.
Resumo:
This paper considers the high-rate performance of source coding for noisy discrete symmetric channels with random index assignment (IA). Accurate analytical models are developed to characterize the expected distortion performance of vector quantization (VQ) for a large class of distortion measures. It is shown that when the point density is continuous, the distortion can be approximated as the sum of the source quantization distortion and the channel-error induced distortion. Expressions are also derived for the continuous point density that minimizes the expected distortion. Next, for the case of mean squared error distortion, a more accurate analytical model for the distortion is derived by allowing the point density to have a singular component. The extent of the singularity is also characterized. These results provide analytical models for the expected distortion performance of both conventional VQ as well as for channel-optimized VQ. As a practical example, compression of the linear predictive coding parameters in the wideband speech spectrum is considered, with the log spectral distortion as performance metric. The theory is able to correctly predict the channel error rate that is permissible for operation at a particular level of distortion.
Resumo:
The instants at which significant excitation of vocal tract take place during voicing are referred to as epochs. Epochs and strengths of excitation pulses at epochs are useful in characterizing voice source. Epoch filtering technique proposed by the authors determine epochs from speech waveform. In this paper we propose zero-phase inverse filtering to obtain strengths of excitation pulses at epochs. Zero-phase inverse filter compensates the gross spectral envelope of short-time spectrum of speech without affecting phase characteristics. Linear prediction analysis is used to realize the zero-phase inverse filter. Source characteristics that can be derived from speech using this technique are illustrated with examples.
Resumo:
The paper proposes a study of symmetrical and related components, based on the theory of linear vector spaces. Using the concept of equivalence, the transformation matrixes of Clarke, Kimbark, Concordia, Boyajian and Koga are shown to be column equivalent to Fortescue's symmetrical-component transformation matrix. With a constraint on power, criteria are presented for the choice of bases for voltage and current vector spaces. In particular, it is shown that, for power invariance, either the same orthonormal (self-reciprocal) basis must be chosen for both voltage and current vector spaces, or the basis of one must be chosen to be reciprocal to that of the other. The original �¿, ��, 0 components of Clarke are modified to achieve power invariance. For machine analysis, it is shown that invariant transformations lead to reciprocal mutual inductances between the equivalent circuits. The relative merits of the various components are discussed.