319 resultados para swd: Kolonialkrieg
Resumo:
In this paper we present XSAMPL3D, a novel language for the high-level representation of actions performed on objects by (virtual) humans. XSAMPL3D was designed to serve as action representation language in an imitation-based approach to character animation: First, a human demonstrates a sequence of object manipulations in an immersive Virtual Reality (VR) environment. From this demonstration, an XSAMPL3D description is automatically derived that represents the actions in terms of high-level action types and involved objects. The XSAMPL3D action description can then be used for the synthesis of animations where virtual humans of different body sizes and proportions reproduce the demonstrated action. Actions are encoded in a compact and human-readable XML-format. Thus, XSAMPL3D describtions are also amenable to manual authoring, e.g. for rapid prototyping of animations when no immersive VR environment is at the animator's disposal. However, when XSAMPL3D descriptions are derived from VR interactions, they can accomodate many details of the demonstrated action, such as motion trajectiories,hand shapes and other hand-object relations during grasping. Such detail would be hard to specify with manual motion authoring techniques only. Through the inclusion of language features that allow the representation of all relevant aspects of demonstrated object manipulations, XSAMPL3D is a suitable action representation language for the imitation-based approach to character animation.
Resumo:
We present an image-based method for relighting a scene by analytically fitting cosine lobes to the reflectance function at each pixel, based on gradient illumination photographs. Realistic relighting results for many materials are obtained using a single per-pixel cosine lobe obtained from just two color photographs: one under uniform white illumination and the other under colored gradient illumination. For materials with wavelength-dependent scattering, a better fit can be obtained using independent cosine lobes for the red, green, and blue channels, obtained from three achromatic gradient illumination conditions instead of the colored gradient condition. We explore two cosine lobe reflectance functions, both of which allow an analytic fit to the gradient conditions. One is non-zero over half the sphere of lighting directions, which works well for diffuse and specular materials, but fails for materials with broader scattering such as fur. The other is non-zero everywhere, which works well for broadly scattering materials and still produces visually plausible results for diffuse and specular materials. We also perform an approximate diffuse/specular separation of the reflectance, and estimate scene geometry from the recovered photometric normals to produce hard shadows cast by the geometry, while still reconstructing the input photographs exactly.
Resumo:
Recently, stable markerless 6 DOF video based handtracking devices became available. These devices simultaneously track the positions and orientations of both user hands in different postures with at least 25 frames per second. Such hand-tracking allows for using the human hands as natural input devices. However, the absence of physical buttons for performing click actions and state changes poses severe challenges in designing an efficient and easy to use 3D interface on top of such a device. In particular, for coupling and decoupling a virtual object’s movements to the user’s hand (i.e. grabbing and releasing) a solution has to be found. In this paper, we introduce a novel technique for efficient two-handed grabbing and releasing objects and intuitively manipulating them in the virtual space. This technique is integrated in a novel 3D interface for virtual manipulations. A user experiment shows the superior applicability of this new technique. Last but not least, we describe how this technique can be exploited in practice to improve interaction by integrating it with RTT DeltaGen, a professional CAD/CAS visualization and editing tool.
Resumo:
This article begins with some recent considerations about real-time music, inspired by the latest contribution of French composer Philippe Manoury. Then, through the case study of the scenic performance La Traversée de la nuit, we analyse some perspectives for designing an Informed Virtual Environment dedicated to live show artistic domain.
Resumo:
This contribution discusses the effects of camera aperture correction in broadcast video on colour-based keying. The aperture correction is used to ’sharpen’ an image and is one element that distinguishes the ’TV-look’ from ’film-look’. ’If a very high level of sharpening is applied, as is the case in many TV productions then this significantly shifts the colours around object boundaries with hight contrast. This paper discusses these effects and their impact on keying and describes a simple low-pass filter to compensate for them. Tests with colour-based segmentation algorithms show that the proposed compensation is an effective way of decreasing the keying artefacts on object boundaries.
Resumo:
Given arbitrary pictures, we explore the possibility of using new techniques from computer vision and artificial intelligence to create customized visual games on-the-fly. This includes coloring books, link-the-dot and spot-the-difference popular games. The feasibility of these systems is discussed and we describe prototype implementation that work well in practice in an automatic or semi-automatic way.
Resumo:
Die Zukunftsforschung in Deutschland hat eine Geschichte, deren Wurzeln bis ins 19. Jahrhundert zurückreichen. Im ersten Teil wird dargestellt, wie sich seit etwa 1890 ein systematischer Umgang mit Zukunftsfragen herausbildete, welche Ansätze in der Zwischenkriegszeit entwickelt wurden, unter welchen Bedingungen sich die „Futurologie“ nach 1945 allmählich etablierte und welchen Stand sie bis zum Ende ihrer ersten Hochkonjunktur um 1970 erreichte. Den Schwerpunkt bildet dabei eine Analyse der unterschiedlichen methodischen Strömungen sowie der Institutionalisierung.
Resumo:
Die Autoren gehen davon aus, dass es soziale und kulturräumliche Unterschiede in den Wahrnehmungsweisen von zukünftigen Klimarisiken gibt und begründen ihre Annahme in theoretischer Hinsicht unter Hinzuziehung der sozialen Konstruktion der Wirklichkeit. Berichtet wird aus einem Forschungsprojekt, das die gesellschaftliche Verarbeitung von Klimarisiken in Küstenstädten der südlichen Nord- und Ostsee im Hinblick darauf untersucht, welche Vorstellungen von einer Vulnerabilität und Resilienz vorliegen. Ausführlich wird das methodische Design der Studie dargestellt. Im Rahmen einer Methodentriangulation wird eine standardisierte Delphi-Expertenbefragung mit einer wissenssoziologischen Diskursanalyse verbunden, um sowohl bisherige als auch zukünftige Vorstellungen von Vulnerabilität und Resilienz zu erheben. Am Beispiel ausgewählter Ergebnisse wird empirisch nachgewiesen, dass Wahrnehmungsunterschiede von Klimarisiken größer sind als angenommen. Die Ergebnisse sind allein aus den Delphi-Daten nicht erklärbar. Ein möglicher Erklärungsansatz ergibt sich ergänzend aus den Erkenntnissen der wissenssoziologischen Diskursanalyse.
Resumo:
Mixed Reality (MR) aims to link virtual entities with the real world and has many applications such as military and medical domains [JBL+00, NFB07]. In many MR systems and more precisely in augmented scenes, one needs the application to render the virtual part accurately at the right time. To achieve this, such systems acquire data related to the real world from a set of sensors before rendering virtual entities. A suitable system architecture should minimize the delays to keep the overall system delay (also called end-to-end latency) within the requirements for real-time performance. In this context, we propose a compositional modeling framework for MR software architectures in order to specify, simulate and validate formally the time constraints of such systems. Our approach is first based on a functional decomposition of such systems into generic components. The obtained elements as well as their typical interactions give rise to generic representations in terms of timed automata. A whole system is then obtained as a composition of such defined components. To write specifications, a textual language named MIRELA (MIxed REality LAnguage) is proposed along with the corresponding compilation tools. The generated output contains timed automata in UPPAAL format for simulation and verification of time constraints. These automata may also be used to generate source code skeletons for an implementation on a MR platform. The approach is illustrated first on a small example. A realistic case study is also developed. It is modeled by several timed automata synchronizing through channels and including a large number of time constraints. Both systems have been simulated in UPPAAL and checked against the required behavioral properties.
Resumo:
We present a high performance-yet low cost-system for multi-view rendering in virtual reality (VR) applications. In contrast to complex CAVE installations, which are typically driven by one render client per view, we arrange eight displays in an octagon around the viewer to provide a full 360° projection, and we drive these eight displays by a single PC equipped with multiple graphics units (GPUs). In this paper we describe the hardware and software setup, as well as the necessary low-level and high-level optimizations to optimally exploit the parallelism of this multi-GPU multi-view VR system.
Resumo:
We present an algorithm for estimating dense image correspondences. Our versatile approach lends itself to various tasks typical for video post-processing, including image morphing, optical flow estimation, stereo rectification, disparity/depth reconstruction, and baseline adjustment. We incorporate recent advances in feature matching, energy minimization, stereo vision, and data clustering into our approach. At the core of our correspondence estimation we use Efficient Belief Propagation for energy minimization. While state-of-the-art algorithms only work on thumbnail-sized images, our novel feature downsampling scheme in combination with a simple, yet efficient data term compression, can cope with high-resolution data. The incorporation of SIFT (Scale-Invariant Feature Transform) features into data term computation further resolves matching ambiguities, making long-range correspondence estimation possible. We detect occluded areas by evaluating the correspondence symmetry, we further apply Geodesic matting to automatically determine plausible values in these regions.
Resumo:
Virtual environments (VE) are gaining in popularity and are increasingly used for teamwork training purposes, e.g., for medical teams. One shortcoming of modern VEs is that nonverbal communication channels, essential for teamwork, are not supported well. We address this issue by using an inexpensive webcam to track the user's head. This tracking information is used to control the head movement of the user's avatar, thereby conveying head gestures and adding a nonverbal communication channel. We conducted a user study investigating the influence of head tracking based avatar control on the perceived realism of the VE and on the performance of a surgical teamwork training scenario. Our results show that head tracking positively influences the perceived realism of the VE and the communication, but has no major influence on the training outcome.
Resumo:
When stereo images are captured under less than ideal conditions, there may be inconsistencies between the two images in brightness, contrast, blurring, etc. When stereo matching is performed between the images, these variations can greatly reduce the quality of the resulting depth map. In this paper we propose a method for correcting sharpness variations in stereo image pairs which is performed as a pre-processing step to stereo matching. Our method is based on scaling the 2D discrete cosine transform (DCT) coefficients of both images so that the two images have the same amount of energy in each of a set of frequency bands. Experiments show that applying the proposed correction method can greatly improve the disparity map quality when one image in a stereo pair is more blurred than the other.
Resumo:
In 2010, we conducted a sociolinguistic survey on the moribund 'Khoisan' language ǂHoan (Ju-ǂHoan), spoken in Botswana at the fringe of the Kalahari Desert. The survey aimed at investigating language use, degrees of multilingualism and language attitude among the ǂHoan speakers. Data collection was done on the basis of a questionnaire. We found that the positive language attitude of individuals towards ǂHoan often conflicts with the community's attitude towards this language, resulting in a split of actual language use between the family and more formal situations. All ǂHoan speakers are at least bilingual speaking the local lingua franca Kgalagadi (Bantu) besides ǂHoan. Most of them are in fact even trilingual, speaking Gǀui (Khoe-Kwadi) in addition to ǂHoan and Kgalagadi. Most of our results stand in line with an earlier sociolinguistic survey on ǂHoan by Batibo (2005a) which was carried out in 2003. In comparing Batibo's results to ours, changes in the sociolinguistic situation of ǂHoan as well as differences between the different villages will be pointed out.
Resumo:
Exposure Fusion and other HDR techniques generate well-exposed images from a bracketed image sequence while reproducing a large dynamic range that far exceeds the dynamic range of a single exposure. Common to all these techniques is the problem that the smallest movements in the captured images generate artefacts (ghosting) that dramatically affect the quality of the final images. This limits the use of HDR and Exposure Fusion techniques because common scenes of interest are usually dynamic. We present a method that adapts Exposure Fusion, as well as standard HDR techniques, to allow for dynamic scene without introducing artefacts. Our method detects clusters of moving pixels within a bracketed exposure sequence with simple binary operations. We show that the proposed technique is able to deal with a large amount of movement in the scene and different movement configurations. The result is a ghost-free and highly detailed exposure fused image at a low computational cost.