899 resultados para sub-tropical and tropical climates
Resumo:
Wetlands are ecosystems commonly characterized by elevated levels of dissolved organic carbon (DOC), and although they cover a surface area less than 2 % worldwide, they are an important carbon source representing an estimated 15 % of global annual DOC flux to the oceans. Because of their unique hydrological characteristics, fire can be an important ecological driver in pulsed wetland systems. Consequently, wetlands may be important sources not only of DOC but also of products derived from biomass burning, such as dissolved black carbon (DBC). However, the biogeochemistry of DBC in wetlands has not been studied in detail. The objective of this study is to determine the environmental dynamics of DBC in different fire-impacted wetlands. An intensive, 2-year spatial and temporal dynamics study of DBC in a coastal wetland, the Everglades (Florida) system, as well as one-time sampling surveys for the other two inland wetlands, Okavango Delta (Botswana) and the Pantanal (Brazil), were reported. Our data reveal that DBC dynamics are strongly coupled with the DOC dynamics regardless of location, season or recent fire history. The statistically significant linear regression between DOC and DBC was applied to estimate DBC fluxes to the coastal zone through two main riverine DOC export routes in the Everglades ecosystem. The presence of significant amounts of DBC in these three fire-impacted ecosystems suggests that sub-tropical wetlands could represent an important continental-ocean carrier of combustion products from biomass burning. The discrimination of DBC molecular structure (i.e. aromaticity) between coastal and terrestrial samples, and between samples collected in wet and dry season, suggests that spatially-significant variation in DBC source strength and/or degree of degradation may also influence DBC dynamics.
Resumo:
Fire, which affects community structure and composition at all trophic levels, is an integral component of the Everglades ecosystem (Wade et al. 1980; Lockwood et al. 2003). Without fire, the Everglades as we know it today would be a much different place. This is particularly true for the short-hydroperiod marl prairies that predominate on the eastern and western flanks of Shark River Slough, Everglades National Park (Figure 1). In general, fire in a tropical or sub-tropical grassland community favors the dominance of C4 grasses over C3 species (Roscoe et al. 2000; Briggs et al. 2005). Within this pyrogenic graminoid community also, periodic natural fires, together with suitable hydrologic regime, maintain and advance the dominance of C4 vs C3 graminoids (Sah et al. 2008), and suppress the encroachment of woody stems (Hanan et al. 2009; Hanan et al. unpublished manuscript) originating from the tree islands that, in places, dominate the landscape within this community. However, fires, under drought conditions and elevated fuel loads, can spread quickly throughout the landscape, oxidizing organic soils, both in the prairie and in the tree islands, and, in the process, lead to shifts in vegetation composition. This is particularly true when a fire immediately precedes a flood event (Herndon et al. 1991; Lodge 2005; Sah et al. 2010), or if so much soil is consumed during the fire that the hydrologic regime is permanently altered as a result of a decrease in elevation (Zaffke 1983).
Resumo:
We provide a compilation of downward fluxes (total mass, POC, PON, BSiO2, CaCO3, PIC and lithogenic/terrigenous fluxes) from over 6000 sediment trap measurements distributed in the Atlantic Ocean, from 30 degree North to 49 degree South, and covering the period 1982-2011. Data from the Mediterranean Sea are also included. Data were compiled from different sources: data repositories (BCO-DMO, PANGAEA), time series sites (BATS, CARIACO), published scientific papers and/or personal communications from PI's. All sources are specifed in the data set. Data from the World Ocean Atlas 2009 were extracted to provide each flux observation with contextual environmental data, such as temperature, salinity, oxygen (concentration, AOU and percentage saturation), nitrate, phosphate and silicate.
Resumo:
In the context of climate change over South America (SA) has been observed that the combination of high temperatures and rain more temperatures less rainfall, cause different impacts such as extreme precipitation events, favorable conditions for fires and droughts. As a result, these regions face growing threat of water shortage, local or generalized. Thus, the water availability in Brazil depends largely on the weather and its variations in different time scales. In this sense, the main objective of this research is to study the moisture budget through regional climate models (RCM) from Project Regional Climate Change Assessments for La Plata Basin (CLARIS-LPB) and combine these RCM through two statistical techniques in an attempt to improve prediction on three areas of AS: Amazon (AMZ), Northeast Brazil (NEB) and the Plata Basin (LPB) in past climates (1961-1990) and future (2071-2100). The moisture transport on AS was investigated through the moisture fluxes vertically integrated. The main results showed that the average fluxes of water vapor in the tropics (AMZ and NEB) are higher across the eastern and northern edges, thus indicating that the contributions of the trade winds of the North Atlantic and South are equally important for the entry moisture during the months of JJA and DJF. This configuration was observed in all the models and climates. In comparison climates, it was found that the convergence of the flow of moisture in the past weather was smaller in the future in various regions and seasons. Similarly, the majority of the SPC simulates the future climate, reduced precipitation in tropical regions (AMZ and NEB), and an increase in the LPB region. The second phase of this research was to carry out combination of RCM in more accurately predict precipitation, through the multiple regression techniques for components Main (C.RPC) and convex combination (C.EQM), and then analyze and compare combinations of RCM (ensemble). The results indicated that the combination was better in RPC represent precipitation observed in both climates. Since, in addition to showing values be close to those observed, the technique obtained coefficient of correlation of moderate to strong magnitude in almost every month in different climates and regions, also lower dispersion of data (RMSE). A significant advantage of the combination of methods was the ability to capture extreme events (outliers) for the study regions. In general, it was observed that the wet C.EQM captures more extreme, while C.RPC can capture more extreme dry climates and in the three regions studied.
Resumo:
This report evaluates the existing situation in the Celtic Seas sub-region and determines the current state of preparedness for transboundary management of marine ecosystems and MSFD implementation. Recommendations for capacity building are provided through the analysis of the existing conflicts and potential synergies between relevant policies, institutions and information resources for MSFD implementation across the region. This report strives to empower stakeholders through the provision of a sound baseline with accurate and up-to-date information on the current status of MSFD implementation, potential opportunities and suggested approaches for building capacities in their region and across the Celtic Seas. It is evident that there are a number of national marine planning processes currently underway and at different stages throughout the United Kingdom and the pre-planning context for MSP in Ireland. On a similar note, this evaluation of MSFD implementation progress to-date in the United Kingdom, Ireland and France highlights that each Member State has implemented the legal and procedural requirements of preparatory steps in differing manners and using different time scales. This variance across the sub-region has the potential to impact the achievement of GES by 2020 across the Celtic Seas.
Resumo:
Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W•m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth’s surface.
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs Gamma-A nifH genes abundance, computed from a collection of source data sets.
Resumo:
Mapping the abundance of 13C in leaf-wax components in surface sediments recovered from the seafloor off northwest Africa (0-35°N) reveals a clear pattern of delta13C distribution, indicating systematic changes in the proportions of terrestrial C3 and C4 plant input. At 20°N latitude, we find that isotopically enriched products characteristic of C4 plants account for more than 50% of the terrigenous inputs. This signal extends westward beneath the path of the dust-laden Sahara Air Layer (SAL). High C4 contributions, apparently carried by January trade winds, also extend far into the Gulf of Guinea. Similar distributions are obtained if summed pollen counts for the Chenopodiaceae-Amaranthaceae and the Poaceae are used as an independent C4 proxy. We conclude that the specificity of the latitudinal distribution of vegetation in North West Africa and the pathways of the wind systems (trade winds and SAL) are responsible for the observed isotopic patterns observed in the surface sediments. Molecular-isotopic maps on the marine-sedimentary time horizons (e.g., during the last glacial maximum) are thus a robust tool for assessing the phytogeographic changes on the tropical and sub-tropical continents, which have important implications for the changes in climatic and atmospheric conditions.
Resumo:
The Indian monsoon system is an important climate feature of the northern Indian Ocean. Small variations of the wind and precipitation patterns have fundamental influence on the societal, agricultural, and economic development of India and its neighboring countries. To understand current trends, sensitivity to forcing, or natural variation, records beyond the instrumental period are needed. However, high-resolution archives of past winter monsoon variability are scarce. One potential archive of such records are marine sediments deposited on the continental slope in the NE Arabian Sea, an area where present-day conditions are dominated by the winter monsoon. In this region, winter monsoon conditions lead to distinctive changes in surface water properties, affecting marine plankton communities that are deposited in the sediment. Using planktic foraminifera as a sensitive and well-preserved plankton group, we first characterize the response of their species distribution on environmental gradients from a dataset of surface sediment samples in the tropical and sub-tropical Indian Ocean. Transfer functions for quantitative paleoenvironmental reconstructions were applied to a decadal-scale record of assemblage counts from the Pakistan Margin spanning the last 2000?years. The reconstructed temperature record reveals an intensification of winter monsoon intensity near the year 100 CE. Prior to this transition, winter temperatures were >1.5°C warmer than today. Conditions similar to the present seem to have established after 450 CE, interrupted by a singular event near 950 CE with warmer temperatures and accordingly weak winter monsoon. Frequency analysis revealed significant 75-, 40-, and 37-year cycles, which are known from decadal- to centennial-scale resolution records of Indian summer monsoon variability and interpreted as solar irradiance forcing. Our first independent record of Indian winter monsoon activity confirms that winter and summer monsoons were modulated on the same frequency bands and thus indicates that both monsoon systems are likely controlled by the same driving force.
Resumo:
Background Neutrophils play a role in the pathogenesis of asthma, chronic obstructive pulmonary disease, and pulmonary infection. Impaired neutrophil phagocytosis predicts hospital-acquired infection. Despite this, remarkably few neutrophil-specific treatments exist.
Objectives We sought to identify novel pathways for the restoration of effective neutrophil phagocytosis and to activate such pathways effectively in neutrophils from patients with impaired neutrophil phagocytosis.
Methods Blood neutrophils were isolated from healthy volunteers and patients with impaired neutrophil function. In healthy neutrophils phagocytic impairment was induced experimentally by using β2-agonists. Inhibitors and activators of cyclic AMP (cAMP)-dependent pathways were used to assess the influence on neutrophil phagocytosis in vitro.
Results β2-Agonists and corticosteroids inhibited neutrophil phagocytosis. Impairment of neutrophil phagocytosis by β2-agonists was associated with significantly reduced RhoA activity. Inhibition of protein kinase A (PKA) restored phagocytosis and RhoA activity, suggesting that cAMP signals through PKA to drive phagocytic impairment. However, cAMP can signal through effectors other than PKA, such as exchange protein directly activated by cyclic AMP (EPAC). An EPAC-activating analog of cAMP (8CPT-2Me-cAMP) reversed neutrophil dysfunction induced by β2-agonists or corticosteroids but did not increase RhoA activity. 8CPT-2Me-cAMP reversed phagocytic impairment induced by Rho kinase inhibition but was ineffective in the presence of Rap-1 GTPase inhibitors. 8CPT-2Me-cAMP restored function to neutrophils from patients with known acquired impairment of neutrophil phagocytosis.
Conclusions EPAC activation consistently reverses clinical and experimental impairment of neutrophil phagocytosis. EPAC signals through Rap-1 and bypasses RhoA. EPAC activation represents a novel potential means by which to reverse impaired neutrophil phagocytosis.
Resumo:
In this work NiO/3mol% Y2O3-ZrO2 (3YSZ) and NiO/8mol% Y2O3-ZrO2 (8YSZ) hollow fibers were prepared by phase-inversion. The effect of different kinds of YSZ (3YSZ and 8YSZ) on the porosity, electrical conductivity, shrinkage and flexural strength of the hollow fibers were systematically evaluated. When compared with Ni-8YSZ the porosity and shrinkage of Ni-3YSZ hollow fibers increases while the electrical conductivity decreases, while at the same time also exhibiting enhanced flexural strength. Single cells with Ni-3YSZ and Ni-8YSZ hollow fibers as the supported anode were successfully fabricated showing maximum power densities of 0.53 and 0.67Wcm-2 at 800°C, respectively. Furthermore, in order to improve the cell performance, a Ni-8YSZ anode functional layer was added between the electrolyte and Ni-YSZ hollow fiber. Here enhanced peak power densities of 0.79 and 0.73Wcm-2 were achieved at 800°C for single cells with Ni-3YSZ and Ni-8YSZ hollow fibers, respectively.
Resumo:
Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior
Resumo:
O papel exercido pelas bactérias é reconhecido como fundamental no metabolismo de qualquer sistema aquático, não só pela mineralização da matéria orgânica, como também pela transferência de matéria e energia para níveis tróficos superiores (“microbial loop”). Para a realização deste estudo foram escolhidos quatro lagos com diferentes estados tróficos no Campus Carreiros da Universidade Federal do Rio Grande – FURG - RS. O Lago Biguás e o da Base possuem características de ambientes eutrófico - hipereutrófico, enquanto que, o Lago Polegar é caracterizado como um ambiente oligo-mesotrófico e o Lago Negro é considerado um ambiente distrófico. Em um estudo anterior em nove lagos rasos nesta mesma região, incluindo os quatro analisados no presente trabalho, Souza (2007) sugeriu que as bactérias livres atuariam como mineralizadoras e o seu crescimento seria limitado pela disponibilidade de fosfato (controle “bottom-up”), enquanto que as bactérias aderidas participariam da decomposição dos agregados orgânicos. Também foi sugerido que as bactérias aderidas seriam controladas principalmente pela predação por flagelados e ciliados (controle “top-down”), provavelmente devido ao seu maior biovolume. Porém, estas informações foram obtidas a partir de relações estatísticas de dados coletados em uma única amostragem. Assim, neste estudo a comunidade bacteriana (abundância e biomassa) e outros parâmetros físicos, químicos e biológicos dos quatro lagos rasos sub-tropicais foram estudados em amostragens quinzenais no decorrer de um ano entre junho de 2008 e maio de 2009. Nossos resultados indicam que a disponibilidade de carbono orgânico dissolvido produzido pelo fitoplâncton parece ser um dos principais fatores controladores da dinâmica de bactérias nestes lagos. Entretanto, a predação no Lago Negro parece ter sido de maior magnitude no controle das bactérias neste ambiente, uma vez que não houve um incremento na abundância bacteriana deste lago proporcional ao incremento da clorofila a. A presença de um maior número de nano - e microflagelados neste lago dá suporte a esta hipótese. Para testar esta hipótese, foi realizado um experimento utilizando-se a Técnica da Diluição em conjunto com a técnica a de FISH (Hibridização in situ Fluorescente) para identificar as taxas de produção e consumo não só dos diferentes morfotipos, mas também dos diferentes grupos filogenéticos (Archaea, Eubacteria, Alfa- Beta- e Gama-Proteobacteria e Cytophaga-Flavobacter) de uma amostra de água do Lago Negro. Os resultados deste experimento indicaram que as bactérias estão, de fato, sendo consumidas por vi protozoários na mesma proporção que estão sendo produzidas. Além disso, no Lago Negro a predação parece estar vinculada ao tamanho/biovolume celular, sendo os morfotipos de tamanho reduzido mais resistentes a predação e, por isso, mais abundantes.
Resumo:
Dengue fever is one of the most important mosquito-borne diseases worldwide and is caused by infection with dengue virus (DENV). The disease is endemic in tropical and sub-tropical regions and has increased remarkably in the last few decades. At present, there is no antiviral or approved vaccine against the virus. Treatment of dengue patients is usually supportive, through oral or intravenous rehydration, or by blood transfusion for more severe dengue cases. Infection of DENV in humans and mosquitoes involves a complex interplay between the virus and host factors. This results in regulation of numerous intracellular processes, such as signal transduction and gene transcription which leads to progression of disease. To understand the mechanisms underlying the disease, the study of virus and host factors is therefore essential and could lead to the identification of human proteins modulating an essential step in the virus life cycle. Knowledge of these human proteins could lead to the discovery of potential new drug targets and disease control strategies in the future. Recent advances of high throughput screening technologies have provided researchers with molecular tools to carry out investigations on a large scale. Several studies have focused on determination of the host factors during DENV infection in human and mosquito cells. For instance, a genome-wide RNA interference (RNAi) screen has identified host factors that potentially play an important role in both DENV and West Nile virus replication (Krishnan et al. 2008). In the present study, a high-throughput yeast two-hybrid screen has been utilised in order to identify human factors interacting with DENV non-structural proteins. From the screen, 94 potential human interactors were identified. These include proteins involved in immune signalling regulation, potassium voltage-gated channels, transcriptional regulators, protein transporters and endoplasmic reticulum-associated proteins. Validation of fifteen of these human interactions revealed twelve of them strongly interacted with DENV proteins. Two proteins of particular interest were selected for further investigations of functional biological systems at the molecular level. These proteins, including a nuclear-associated protein BANP and a voltage-gated potassium channel Kv1.3, both have been identified through interaction with the DENV NS2A. BANP is known to be involved in NF-kB immune signalling pathway, whereas, Kv1.3 is known to play an important role in regulating passive flow of potassium ions upon changes in the cell transmembrane potential. This study also initiated a construction of an Aedes aegypti cDNA library for use with DENV proteins in Y2H screen. However, several issues were encountered during the study which made the library unsuitable for protein interaction analysis. In parallel, innate immune signalling was also optimised for downstream analysis. Overall, the work presented in this thesis, in particular the Y2H screen provides a number of human factors potentially targeted by DENV during infection. Nonetheless, more work is required to be done in order to validate these proteins and determine their functional properties, as well as testing them with infectious DENV to establish a biological significance. In the long term, data from this study will be useful for investigating potential human factors for development of antiviral strategies against dengue.
Resumo:
During the Sedimentation of the platform carbonate deposits of the Korallenoolith Formation (middle Oxfordian to early Kimmeridgian) small buildups ofcorals formed in the Lower Saxony Basin. These bioconstructions are restricted to particular horizons (Untere Korallenbank,ßorigenuna-Bank Member etc.) and represent patch reefs and biostromes. In this study, the development of facies, fossil assemblages, spatial distribution of fossils, and reefs of the ßorigenuna-Bank Member (upper Middle Oxfordian) in the Süntel Mts and the eastern Wesergebirge Mts is described; the formation of reefs is discussed in detail. Twelve facies types are described and interpreted. They vary between high-energy deposits as well winnowed oolites and quiet-water lagoonal mudstones. Owing to the significance of biota, micro- and macrofossils are systematically described. The reefs are preserved in growth position, are characterized by numerous corresponding features and belong to a certain reef type. According to their size, shape and framework, they represent patch reefs, coral knobs (sensu James, 1983), coral thrombolite reefs (sensu Leinfelder et al., 1994) or “Klein- and Mitteldickichte” (sensu Laternser, 2001). Their growth fabric corresponds to the superstratal (dense) pillarstone (sensu Insalaco, 1998). As the top of the ßorigenuna-Bank displays an erosional unconformity (so-called Hauptdiskontinuität), the top of the reefs are erosionally capped. Their maximum height amounts to at least the maximum thickness of the ßorigenuna-Bank which does not exceed 4 metres. The diversity of coral fauna of the reefs is relatively low; a total of 13 species is recorded. The coral community is over- whelmingly dominated by the thin-branched ramose Thamnasteria dendroidea (Lamouroux) that forms aggregations of colonies (77?. dendroidea thickets). Leafy to platy Fungiastrea arachnoides (Parkinson) and Thamnasteria concinna (Goldfuss) occur subordinately, other species are only of minor importance. In a few cases, the reef-core consisting of Th. dendroidea thickets is laterally encrusted by platy F. arachnoides and Th. concinna colonies, and microbial carbonates. This zonation reflects probably a succession of different reef builders as a result of changing environmental conditions (allogenic succession). Moreover, some reefs are overlain by a biostrome made of large Solenopora jurassica nodules passing laterally in a nerinean bed. Mikrobial carbonates promoted reef growth and favoured the preservation of reef organismn in their growth position or in situ. They exhibit a platy, dendroid, or reticulate growth form or occur as downward-facing hemispheroids. According to their microstructure, they consist of a peloidal, clotted, or unstructured fabric (predominately layered and poorly structured thrombolite as well as clotted leiolite) (sensu Schmid, 1996). Abundant endo- and epibiontic organisms (bivalves, gastropods, echinoids, asteroids, ophiuroids, crabs etc) are linked to the reefs. With regard to their guild structure, the reefs represent occurrences at which only a few coral species serve as builder. Moreover, microbial carbonates contribute to both building and binding of the reefs. Additional binder as well as baffler are present, but not abundant. According to the species diversity, the dweller guild comprises by far the highest number of invertebrate taxa. The destroyer guild chiefly encompasses bivalves. The composition of the reef community was influenced by the habitat structure of the Th. dendroidea thickets. Owing to the increase in encrusting organisms and other inhabitants of the thickets, the locational factors changed, since light intensity and hydrodynamic energy level and combined parameters as oxygen supply declined in the crowded habitat. Therefore a characteristic succession of organisms is developed that depends on and responds to changing environmental conditions („community replacement sequence“). The succession allows the differentiation of different stages. It started after the cessation of the polyps with boring organisms and photoautotrophic micro-encrusters (calcareous algae, Lithocodium aggregatum). Following the death of these pioneer organisms, encrusting and adherent organisms (serpulids, „Terebella“ species, bryozoans, foraminifers, thecideidinids, sklerospongid and pharetronid sponges, terebratulids), small mobile organisms (limpets), and microbial induced carbonates developed. The final stage in the community replacement sequence gave rise to small cryptic habitats and organisms that belong to these caves (cryptobionts, coelobites). The habitat conditions especially favoured small non-rigid demosponges (“soft sponges”) that tolerate reduced water circulation. Reef rubble is negligible, so that the reefs are bordered by fossiliferous micritic limestone passing laterally in micritic limestone. Approximately 10% of the study area (outcropping florigemma-Bank) corresponds to reefal deposits whereas the remaining 90% encompass lagoonal inter-reefal deposits. The reef development is a good example for the interaction between reef growth, facies development and sea-level changes. It was initiated by a sea-level rise (transgression) and corresponding decrease in the hydrodynamic energy level. Colonization and reef growth took place on a coarse-grained Substrate composed of oncoids, larger foraminifers and bioclasts. Reef growth took place in a calm marine lagoonal setting. Increasing abundance of spherical coral morphs towards the Northeast (section Kessiehausen, northwestem Süntel Mts) reflects higher turbidity and a facies transition to coral occurrences of the ßorigenuna-Bank Member in the adjacent Deister Mts. The reef growth was neither influenced by stonns nor by input of siliciclastic deposits, and took place in short time - probably in only a thousand years under most probably mesotrophic conditions. The mass appearance of solenoporids and nerineids in the upper part of the ßorigenuna-Bank Member point to enhanced nutrient level as a result of regression. In addition, this scenario of fluctuations in nutrient availability seems to be responsible for the cessation of reef corals. The sea level fall reached its climax in the subaerial exposure and palaeokarst development of the florigemma-Bank. The reef building corals are typical pioneer species. The blade-like, flattened F. amchnoides colonies are characterized by their light porous calcium carbonate skeleton, which is a distinct advantage in soft bottom environment. Thus, they settled on soft bottom exposing the large parts of its surface to the incoming light. On the other hand, in response to their light requirements they were also able to settle shaded canopy structures or reef caves. Th. dendroidea is an opportunistic coral species in very shallow, well illuminated marine environment. Their thin and densely spaced branches led to a very high surface/volume ratio of the colonies that were capable to exploit incoming light due to their small thamasterioid calices characterized by “highly integrated polyps”. In addition, sideward coalescence of branches during colony growth led to a wave-resistant framework and favoured the authochthonous preservation of the reefs. Asexual reproduction by fragmented colonies promoted reef development as Th. dendroidea thickets laterally extend over the sea floor or new reefs have developed from broken fragments of parent colonies. Similar build ups with Th. dendroidea as a dominant or frequent reef building coral species are known from the Paris Basin and elsewhere from the Lower Saxony Basin (Kleiner Deister Mts). These buildups developed in well-illuminated shallow water and encompass coral reefs or coral thrombolite reefs. Intra- and inter-reef deposits vary between well-winnowed reef debris limestone and mudstones representing considerably calmer conditions. Solenoporid, nerineids and diceratides belong to the characteristic fossils of these occurrences. However, diceratides are missing in theflorigemma-Bank Member. Th. dendroidea differs in its colonization of low- to high-energy environment from recent ramose scleractinian corals (e.g., Acropora and Porites sp.). The latter are restricted to agitated water habitats creating coral thickets and carpets. According to the morphologic plasticity of Th. dendroidea, thick-branched colonies developed in a milieu of high water energy, whereas fragile, wide- and thin-branched colonies prevail in low-energy settings. Due to its relatively rapid growth, Th. dendroidea was able to keep pace with increased Sedimentation rates. 68 benthonic foraminiferan species/taxa have been recognized in thin sections. Agglutinated foraminifers (textulariids) predominate when compared with rotaliids and milioliids. Numerous species are restricted to a certain facies type or occur in higher population densities, in particular Everticyclammina sp., a larger agglutinated foraminifer that occurs in rock building amounts. Among the 25 reef dwelling foraminiferal species, a few were so far only known from Late Jurassic sponge reefs. Another striking feature is the frequency of adherent foraminiferal species. Fauna and flora, in particular dasycladaleans and agglutinated foraminifers, document palaeobiogeographic relationships to the Tethys and point to (sub)tropical conditions. Moreover, in Germany this foraminiferan assemblage is yet uncompared. In Southern Germany similar tethyan type assemblages are not present in strata as young as Middle Tithonian.