985 resultados para spent sulphite liquor
Resumo:
Background: Worldwide distribution of surgical interventions is unequal. Developed countries account for the majority of surgeries and information about non-cardiac operations in developing countries is scarce. The purpose of our study was to describe the epidemiological data of non-cardiac surgeries performed in Brazil in the last years. Methods and Findings: This is a retrospective cohort study that investigated the time window from 1995 to 2007. We collected information from DATASUS, a national public health system database. The following variables were studied: number of surgeries, in-hospital expenses, blood transfusion related costs, length of stay and case fatality rates. The results were presented as sum, average and percentage. The trend analysis was performed by linear regression model. There were 32,659,513 non-cardiac surgeries performed in Brazil in thirteen years. An increment of 20.42% was observed in the number of surgeries in this period and nowadays nearly 3 million operations are performed annually. The cost of these procedures has increased tremendously in the last years. The increment of surgical cost was almost 200%. The total expenses related to surgical hospitalizations were more than $10 billion in all these years. The yearly cost of surgical procedures to public health system was more than $1.27 billion for all surgical hospitalizations, and in average, U$445.24 per surgical procedure. The total cost of blood transfusion was near $98 million in all years and annually approximately $10 million were spent in perioperative transfusion. The surgical mortality had an increment of 31.11% in the period. Actually, in 2007, the surgical mortality in Brazil was 1.77%. All the variables had a significant increment along the studied period: r square (r(2)) = 0.447 for the number of surgeries (P = 0.012), r(2) = 0.439 for in-hospital expenses (P = 0.014) and r(2) = 0.907 for surgical mortality (P = 0.0055). Conclusion: The volume of surgical procedures has increased substantially in Brazil through the past years. The expenditure related to these procedures and its mortality has also increased as the number of operations. Better planning of public health resource and strategies of investment are needed to supply the crescent demand of surgery in Brazil.
Resumo:
Blanks (flasks without substrate containing only inoculum and medium) are used in vitro to correct for gas. CH(4) and residual organic matter (OM) fermented in inoculum. However inclusion of rumen fermentation modifiers may affect fermentation of OM in the substrate and inoculum. Thus, data correction using blanks that lack additives may result in inaccurate adjustment for background fermentation. Our objective was to evaluate impacts of using blanks containing additive (i.e., specific blanks) or blanks without additive on estimation of in vitro net gas and CH(4) production. We used the semi-automatic in vitro gas production technique including monensin sodium at 2.08 mg/l of buffered rumen fluid (Experiment 1) or carvacrol, eugenol and 1,8-cineol at 667 mg/l (Experiment 2) in flasks with substrate and in blank flasks. At 16h of incubation, monensin reduced (P <= 0.02) total gas production in flasks containing substrate (162.0 ml versus 146.3 ml) and in blanks (84.4 ml versus 79.2 ml). Total methane production was also decreased (P <= 0.05) by adding monensin to flasks containing substrate (15.7 ml versus 11.9 ml) as well as in blanks (6.4 ml versus 5.0 ml). Inclusion of carvacrol or eugenol reduced (P <= 0.05) total gas and CH(4) production in flasks with substrate and in blanks, but in a more pronounced manner than monensin. For these three additives, correction for blank without additive resulted in lower net gas and CH(4) production than correction for a treatment specific blank. For instance, correcting carvacrol data using a blank without the additive resulted in negative net gas and CH(4) production (-6.5 and -1.5 ml. respectively). These biologically impossible results occurred because total gas and CH(4) production in blanks without carvacrol (46.1 and 2.1 ml, respectively) were higher than in flasks containing substrate plus carvacrol (39.7 and 0.6 ml, respectively). Results demonstrated that inclusion of rumen additives affected fermentation of OM in the substrate and the inoculum. Thus, correction of gas and CH(4) production using blanks without additives resulted in overestimation of these variables. Blanks containing the additive of interest should be included when rumen fermentation modifiers are evaluated in vitro. This paper is part of the special issue entitled: Greenhouse Gases in Animal Agriculture Finding a Balance between Food and Emissions, Guest Edited by T.A. McAllister, Section Guest Editors: K.A. Beauchemin, X. Hao, S. McGinn and Editor for Animal Feed Science and Technology, P.H. Robinson. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A fully automated multipumping flow system (MPFS) using water-soluble CdTe quantum dots (QD) as sensitizers is proposed for the chemiluminometric determination of the anti-diabetic drugs gliclazide and glipizide in pharmaceutical formulations. The nanocrystals acted as enhancers of the weak CL emission produced upon oxidation of sulphite by Ce(IV) in acidic medium, thus improving sensitivity and expanding the dynamical analytical concentration range. By interacting with the QD, the two analytes prevented their sensitizing effect yielding a chemiluminescence quenching of the Ce(IV)-SO(3)(2-)CdTe QD system. The pulsed flow inherent to MPFS assured a fast and efficient mixing of all solutions inside the flow cell, circumventing the need for a reaction coil and facilitating the monitoring of the short-lived generated chemiluminescent species. QD crystal size, concentration and spectral region for measurement were investigated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Aim. The purpose of present study was to compare the acute physiological responses to a circuit weight training with the responses to a combined circuit training (weight training and treadmill run). Methods. The sample consisted of 25 individuals at an average state of training, 10 men and 15 female, between 18 and 35 year old. There were selected 60 second sets of resistance exercises to the circuit weight training (CWT). Whereas in the combined circuit training (CCT), the subjects spent 30 seconds on the same resistance exercises and 30 seconds running on the treadmill. The rest intervals between the sets lasted 15 seconds. The analysis of variance (ANOVA) with 5% significance level was utilized to the statistical analysis of the results. Results. Comparing circuit training protocols, it was noted that CCT elicits a higher relative and absolute <(V)over dot>O(2) and energy expenditure values than CWT for both genders (P<0.05). Regarding inter-gender comparison, males showed higher absolute and relative <(V)over dot>O(2) and absolute energy expenditure values for both CWT and CCT than females (P<0.05). Females showed a significant greater % <(V)over dot>O(2max) value for both CWT and CCT. Due to the experimental conditions used to state both circuit training bouts (CWT and CCT), the <(V)over dot>O(2) rate found was higher than the values reported by previous studies which used heavier weight lift. Conclusion. CCT seems adequate to produce cardiovascular improvements and greater energy expenditure for both men and women, while CWT group classes are sufficient only for unfit women.
Resumo:
Biopulping fundamentals, technology and mechanisms are reviewed in this article. Mill evaluation of Eucalyptus grandis wood chips biotreated by Ceriporiopsis subvermispora on a 50-tonne pilot-plant demonstrated that equivalent energy savings can be obtained in lab- and mill-scale biopulping. Some drawbacks concerning limited improvements in pulp strength and contamination of the chip pile with opportunist fungi have been observed. The use of pre-cultured wood chips as inoculum seed for the biotreatment process minimized contamination problems related to the use of blended mycelium and corn-steep liquor in the inoculation step. Alkaline wash restored part of the brightness in biopulps and marketable brightness values were obtained by one-stage bleaching with 5% H2O2 when bio-TMP pulps were under evaluation. Considering the current scenario, the understanding of biopulping mechanisms has gained renewed attention because more resistant and competitive fungal species could be selected with basis on a function-directed screening project. A series of studies aimed to elucidate structural changes in lignin during wood biodegradation by C. subvermispora had indicated that lignin depolymerization occurs during initial stages of wood biotreatment. Aromatic hydroxyls did not increase with the split of aryl-ether linkages, suggesting that the ether-cleavage-products remain as quitione-type structures. On the other hand, cellulose is more resistant to the attack by C subvermispora. MnP-initiated lipid peroxidation reactions have been proposed to explain degradation of non-phenolic lignin substructures by C subvermispora, while the lack of cellobiohydrolases and the occurrence of systems able to suppress Fenton`s reaction in the cultures have explained non-efficient cellulose degradation by this biopulping fungus. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
This study deals with two innovative brewing processes, high gravity batch and complete continuous beer fermentation systems. The results show a significant influence of the variables such as concentration and temperature on the yield factor of the substrate into ethanol and consequently on the productivity of the high gravity batch process. The technological feasibility of continuous production of beer based on yeast immobilization on cheap alternative carriers was also demonstrated. The influence of process parameters on fermentation performance and quality of the obtained beers was studied by sensorial analysis. No significant difference in the degree of acceptance between the obtained products and some traditional market brands was found. (c) 2008 Institute of Chemistry, Slovak Academy of Sciences.
Resumo:
In biopulping, efficient wood colonization by a selected white-rot fungus depends on previous wood chip decontamination to avoid the growth of primary molds. Although simple to perform in the laboratory, in large-scale biopulping trials, complete wood decontamination is difficult to achieve. Furthermore, the use of fungal growth promoters such as corn steep liquor enhances the risk of culture contamination. This paper evaluates the ability of the biopulping fungus Ceriporiopsis subvermispora to compete with indigenous fungi in cultures of fresh or poorly decontaminated Eucalyptus grandis wood chips. While cultures containing autoclaved wood chips were completely free of contaminants, primary molds grew rapidly when non-autoclaved wood chips were used, resulting in heavily contaminated cultures, regardless of the C. subvermispora inoculum/wood ratio evaluated (5, 50 and 3000 mg mycelium kg(-1) wood). Studies on benomyl-amended medium suggested that the fungi involved competed by consumption of the easily available nutrient sources, with C. subvermispora less successful than the contaminant fungi. The use of acid-washed wood chips decreased the level of such contaminant fungi, but production of manganese peroxidase and xylanases was also decreased under these conditions. Nevertheless, chemithermomechanical pulping of acid-washed samples biotreated under non-aseptic conditions gave similar fibrillation improvements compared to samples subjected to the standard biodegradation process using autoclaved wood chips.
Resumo:
The effect of different culture conditions have been evaluated concerning the extracellular enzyme activities of the white-rot fungus Ceriporiopsis subvermispora growing on Eucalyptus grandis wood. The consequence of the varied fungal pretreatment on a subsequent chemithermomechanical pulping (CTMP) was addressed. In all cultures, manganese peroxidase (MnP) and xylanase were the predominant extracellular enzymes. The biopulping efficiency was evaluated based on the amount of fiber bundles obtained after the first fiberizing step and the fibrillation levels of refined pulps. It was found that the MnP levels in the cultures correlated positively with the biopulping benefits. On the other hand, xylanase and total oxalate levels did not vary significantly. Accordingly, it was not possible to determine whether MnP accomplishes the effect alone or depends on synergic action of other extracellular agents. Pulp strength and fiber size distribution were also evaluated. The average fiber length of CTMP pulps prepared from untreated wood chips was 623 mu m. Analogous values were observed for most of the biopulps; however, significant amounts of shorter fibers were found in the biopulp prepared from wood chips biotreated in cultures supplemented with glucose plus corn-steep liquor. Despite evidence of reduced average fiber length, biopulps prepared from these wood chips presented the highest improvement in tensile indexes (+28% at 23 degrees Schopper-Riegler).
Resumo:
Use of activated charcoal and ion-exchange resin to cleaN up and concentrate enzymes in extracts from biodegraded wood. Ceriporiopsis subvermispora was used for the biodegradation of Eucalyptus grandis chips in the presence or absence of co-substrates (glucose and corn steep liquor) during 7, 14 and 28 days. Afterwards, the biodegraded chips were extracted with 50 mM sodium acetate buffer (pH 5.5) supplemented with 0.01% Tween 60. High activities of manganese peroxidases (MnPs) were observed in all the extracts, both in the absence (430, 765 and 896 UI kg(-1) respectively) and in the presence of co-substrates (1,013; 2,066 and 2,323 UI kg(-1) respectively). The extracts presented a high ratio between absorbances at 280 and 405 nm, indicating a strong abundance of aromatic compounds derived from lignin over heme-peroxidases. Adsorption into activated charcoal showed to be an adequate strategy to reduce the absorbance at 280 urn in all the extracts. Moreover, it allowed to maximize the capacity of an anion exchange resin bed (DEAE-Sepharose) used to concentrate the MnPs present in the extracts. It was concluded that the use of activated charcoal followed by adsorption into DEAE Sepharose is a strategy that can be used to concentrate MnPs in extracts obtained during the biodegradation of E. grandis by C. subvermispora.
Resumo:
In the present study, it was evaluated how two different culture conditions for the biotreatment of Eucalyptus grandis by Ceriporiopsis subvermispora affect a subsequent high-yield kraft pulping process. Under the varied culture conditions investigated, different extracellular enzyme activities were observed. Manganese-peroxidase (MnP) secretion was 3.7 times higher in cultures supplemented with glucose plus corn-steep liquor (glucose/CSL) as compared to non-supplemented (NS) cultures. The biotreated samples underwent diverse levels of wood component degradation as losses of weight and lignin were increased in glucose/CSL cultures. Mass balances for lignin removal during kraft pulping showed that delignification was facilitated when both biotreated wood samples were cooked. Delignification efficiency did not correlate positively with MnP levels in the cultures. On the other hand, biopulps from NS and glucose/CSL cultures saved 27% and 38% beating time to achieve 288 Schopper-Riegler freeness during refining, respectively. Biopulps disposed of decreased tensile and tear resistances, thus easier refining of the biokraft pulps seems to be a consequence of less resistant fiber walls. Improved beatability of biopulps was tentatively related to short fibers and fines formation during refining. We suggest that to some extent polysaccharide depolymerization occurred during the biotreatment, which also resulted in diminished pulp yields in the case of glucose/CSL cultures.
Resumo:
BACKGROUND: The hydrolysis of hemicellulosic material can provide liquor with high xylose concentration (which can be used as a fermentation medium) and phenolic compounds (Phs), potentially immunostimulating compounds. However, these hydrolysates must be detoxified in order to remove the Phs that can act as inhibitors in bioconversions. RESULTS: Aqueous two-phase systems composed of thermoseparating copolymers were used for rice straw hydrolysate detoxification. The hydrolysis process was able to promote chemical breakdown of 85% of the total hemicellulose content, 14% of the cellulose, and 2% of the lignin. The hydrolysate obtained contained 19.7 g L-1 of xylose and several phenolic compounds, such as vanillin, vanillic acid, ferullic acid, etc. The phenolics extraction was studied as a function of copolymer molar mass (1100 g mol(-1), 2000 g mol(-1) and 2800 g mol(-1)), their percentages (from 5% to 50%) and Phs initial concentration. Phenolic compounds extraction of around 80% was obtained under the following conditions: 20% (w/w) and 35% (w/w) copolymer 1100 g mol-1, 35% (w/w) copolymer 2000 g mol(-1) and 35% (w/w) copolymer 2800 g mol(-1) at 25 degrees C. CONCLUSIONS: The results demonstrated the viability of this method for the removal of Phs from rice straw hydrolysate, which has potential uses in bioconversion processes. (c) 2007 Society of Chemical Industry.
Resumo:
The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The sharpshooter Bucephalogonia xanthophis (Berg) (Homoptera: Cicadellidae) is a vector of the xylem-limited bacterium, Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner), which causes citrus variegated chlorosis. Despite the importance of citrus variegated chlorosis, the probing behavior of vectors on citrus and its implications for transmission of X. fastidiosa have not been studied. Here we studied electrical penetration graph (EPG-DC system) waveforms produced by B. xanthophis on Citrus sinensis (L.) Osbeck (Rutaceae), and their relationships with stylet activities and xylem ingestion. Electrical penetration graph waveforms were described based on amplitude, frequency, voltage level, and electrical origin of the observed traces during stylet penetration on plant tissues. The main waveforms were correlated with histological observations of salivary sheaths in plant tissues and excretion analysis, in order to determine stylet activities and their precise position. Six waveforms and associated activities are described: (S) secretion of salivary sheath and intracellular stylet pathway, (R) resting during stylet pathway, (Xc) contact of stylets with xylem vessels, (Xi) active xylem ingestion, (N) interruption within the xylem phase (during Xc or Xi), and (W) withdrawal of stylet from the plant. The sharpshooter spent 91.8% of its probing time with its stylet in the xylem, where the main activity was ingestion (Xi: 97.5%). During a probe, the most likely sequence of events is secretion of salivary sheath and pathway (S) through epidermal and parenchyma cells (all individuals), followed by contact with xylem (Xc) (67.6% of all individuals) and ingestion (Xi) (88.3% of those that exhibit waveform Xc). The mean time to contact the xylem (Xc) and initiate ingestion (Xi) after onset of the first probe was 27.8 and 34.2 min, respectively. However, sustained xylem ingestion (Xi > 5 min) was established after 39.8 min, on average. This information is basic for future studies on the transmission mechanisms of X. fastidiosa and in order to establish control strategies aimed at interfering with this process.
Resumo:
A study was conducted in Brazil to identify factors affecting grazing distribution of yearling Nelore cross heifers and to evaluate the efficacy of placement of a salt-mineral mix away from water to improve uniformity of grazing. Two pastures (25 ha and 42 ha) were evaluated for four 15-d sessions. Mineral mix was placed 590 m to 780 m from water during two sessions and at water for two sessions. Stubble heights were measured at the beginning and end of each session in 1-ha subunits of each pasture. Cattle locations were recorded oil clay 13 and 14 of each session by horseback observers. Heifers avoided areas with a preponderance of forbs and taller grass (P < 0.001). For the first 15 days of the study cattle avoided subunits farther from water. Thereafter, horizontal distance from water had no affect on grazing use (P > 0.10). Stubble height reduction was more uniform (P < 0.05) when the mineral mix was Lit water compared to away from water. In contrast, heifers spent less time farther from water when Mineral mix was placed at water (P = 0.02) based Oil Visual observations. Strategic placement of a salt-mineral mix away from water does not appear to be a reliable tool to improve cattle grazing distribution in humid tropical pastures from 25 ha to 45 ha in size.
Resumo:
Nile tilapia social position (Oreochromis niloticus) can be mediated by multiple channels, including chemical communication. Absence of chemical cues in the environment prevents hierarchical settlement among pairs, and enhances time spent in confrontations. The aim of this study was to test the effect of continuously renewed water flow on the establishment of hierarchical dominance in Nile tilapia juveniles. In this condition, a high frequency of attacks and disruption on hierarchical stability were expected because chemical cues for hierarchy maintenance could be washed out. After 3 days in isolation, the fish were paired by standard size but not by sex, and submitted to two conditions: continuously renewed water flow (RENEWED, n = 7) and non-renewed water flow (NONRENEWED n = 8). The paired fish were placed in an aquarium (40 cm x 30 cm x 40 cm) for 3 h; four 10-min sessions were video-recorded: the first, immediately after the fish were paired and the others 1, 2, and 3 h after pairing. Hierarchy was identified by a dominance index (DI = given attacks/received + given attacks) For each fish. The hierarchical stability was achieved by analyzing the difference between dominant DI and subordinate DI (DI-D). Hierarchy was established in both groups after second session because the DI was significantly higher for one fish of the pair. The frequency of attacks of the dominant fish in RENEWED and NONRENEWED conditions was similar in all observation sessions. The attack frequency by subordinate fish was also similar during the first three sessions (2-h pairing). However, the frequency of attacks by subordinate fish in the RENEWED condition was higher than in the NONRENEWED situation at the fourth observation session (means +/- S.E.: RENEWED = 2.83 +/- 0.94 x 10 min(-1) and NONRENEWED = 0.25 +/- 0.16 x 10 min(-1); Mann-Whitney, p = 0.04). At this point, a significant reduction of the DI-D was observed (means +/- S.E.: RENEWED = 0.70 +/- 0.11 and NONRENEWED = 1,00 +/- 0.002; Mann-Whitney, p = 0.04). The changes in DI-D were related to more frequent attacks by the subordinated fish in renewed water flow. According to our results, the unsteady agonistic interaction under renewed water flow leads to social instability. Thus, continuous water renewing can wash out relevant chemical substances and therefore disturb the dominance recognition by subordinate fish. (C) 2007 Elsevier B.V. All rights reserved.