920 resultados para solar to power efficiency


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic structures and dynamics are the key to linking the material composition and structure to functionality and performance.

An essential issue in developing semiconductor devices for photovoltaics is to design materials with optimal band gaps and relative positioning of band levels. Approximate DFT methods have been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively dependent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0-0.01 and 0.02-0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV).

The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly.

A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions.

Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with electrons of predominant s-character. To overcome this, we introduce a formal set of ECP extensions that enable accurate description of p-block elements. The extensions consist of a model representing the core electrons with the nucleus as a single pseudo particle represented by FSG, interacting with valence electrons through ECPs. We demonstrate and validate the ECP extensions for complex bonding structures, geometries, and energetics of systems with p-block character (C, O, Al, Si) and apply them to study materials under extreme mechanical loading conditions.

Despite its success, the eFF framework has some limitations, originated from both the design of Pauli potentials and the FSG representation. To overcome these, we develop a new framework of two-level hierarchy that is a more rigorous and accurate successor to the eFF method. The fundamental level, GHA-QM, is based on a new set of Pauli potentials that renders exact QM level of accuracy for any FSG represented electron systems. To achieve this, we start with using exactly derived energy expressions for the same spin electron pair, and fitting a simple functional form, inspired by DFT, against open singlet electron pair curves (H2 systems). Symmetric and asymmetric scaling factors are then introduced at this level to recover the QM total energies of multiple electron pair systems from the sum of local interactions. To complement the imperfect FSG representation, the AMPERE extension is implemented, and aims at embedding the interactions associated with both the cusp condition and explicit nodal structures. The whole GHA-QM+AMPERE framework is tested on H element, and the preliminary results are promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all. Only a handful of FRBs had been detected when we started this project. Taking account of the scant observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions. Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead the scattering is probably caused by the interstellar medium in the FRB's host galaxy, and indicates that this burst sits in the central region of that galaxy. Pulse durations of order $\ms$ constrain source sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear whether they were genuine astronomical signals as distinct from `perytons', clearly terrestrial radio bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when their doors opened while they were still heating. Evidence for the astronomical nature of FRBs has strengthened since our paper was published. Some bursts have been found to show linear and circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope to resume working on FRBs in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints.

The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central $\ms$ pulsar. The two orbits are highly hierarchical, namely $P_{\mathrm{orb,1}}\ll P_{\mathrm{orb,2}}$, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, $e_1/e_2$, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, $e_1\ll e_2$ for the parallel mode, while $e_1\gg e_2$ for the anti-parallel one. We show that the former precesses $\sim 10$ times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially $e_1$ oscillate on $\sim 10^3\yr$ timescale. Detectable changes would occur within $\sim 1\yr$. We demonstrate that the anti-parallel mode gets damped $\sim 10^4$ times faster than its parallel brother by any dissipative process diminishing $e_1$. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter ($Q$) to be $\sim 10^6$, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause $e_1$ to grow rather than decay.

Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.

Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, $P$, for $P\leq \epsy^3\mu$ where $\epsy$ is the material's yield strain and $\mu$ its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top $140\,\mathrm{cm}$ of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids.

Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation {\it before} the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A previously suggested birefringence-customized modular optical interconnect technique is extended for lens-free relay operation. Various lens-free relay imaging models are developed. We claim that the lens-free relay system is important in simplifying an optical interconnect system whenever the imaging conditions permit. To verify the validity of various proposed concepts, we experimentally implemented some 8 x 8 optical permutation modules. High-power efficiency and low channel cross talk were experimentally observed. In general, the larger the channel spacing, the less the cross talk. A quantitative cross-talk measurement of the lens-free relay system shows that, for a fixed channel width of 0.5 mm and channel spacings of 0.5, 1, and 2 mm, a less than -20-dB cross-talk performance can be guaranteed for lens-free relay distances of 40, 280, and 430 mm, respectively. (C) 1998 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

对高平均功率输出的激光二极管侧面抽运电光调Q倍频 Nd:YAG激光器进行了研究,当采用90个60W的脉冲激光二极管阵列抽运时,在重复频率为10Hz下,实现了最大平均功率为1180mW的1064nm红外激光输出,光-光转换效率为11%。腔外倍频获得600mW的532nm绿光输出,倍频效率达到50%以上。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-power ytterbium-doped fiber laser (YDFL) with homemade double-clad fiber (DCF) is introduced in this letter. The geometric parameter and laser characteristics of the fiber have been studied. With one-end-pumping scheme, pumped by a high-power laser diode with launching power of 280 W, a maximum continuous wave (CW) output of 110 W is obtained with an optical-to-optical efficiency of 40%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES]En este proyecto se recoge un análisis de las diferentes tecnologías de centrales termosolares. Las energías renovables tienen un papel fundamental en el abastecimiento energético futuro, ya que son una fuente inagotable con un impacto medioambiental mínimo. Dentro de las renovables, la energía termosolar es una de las más destacables en España, que se ha situado como el país líder en termosolar. Existen cuatro tecnologías diferentes para este tipo de centrales, por lo que el objetivo de este trabajo es profundizar en su conocimiento y proporcionar un criterio objetivo que permita seleccionar la más adecuada en futuras instalaciones. Para ello, se considerarán tanto aspectos técnicos como económicos, con el fin de estudiar las principales ventajas y desventajas de cada tipo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last two or three years, the increasing costs of energy and worsening market conditions have focussed even greater attention within paper mills than before, on considering ways to improve efficiency and reduce the energy used in paper making. Arising from a multivariable understanding of paper machine operation, Advanced Process Control (APC) technology enables paper machine behaviour to be controlled in a more coherent way, using all the variables available for control. Furthermore, with the machine under better regulation and with more variables used in control, there is the opportunity to optimise machine operation, usually providing very striking multi-objective performance improvement benefits of a number of kinds. Traditional three term control technology does not offer this capability. The paper presents results from several different paper machine projects we have undertaken around the world. These projects have been aimed at improving machine stability, optimising chemicals usage and reducing energy use. On a brown paperboard machine in Australasia, APC has reduced specific steam usage by 10%, averaged across the grades; the controller has also provided a significant capacity to increase production. On a North American newsprint machine, the APC system has reduced steam usage by more than 10%, and it provides better control of colour and much improved wet end stability. The paper also outlines early results from two other performance improvement projects, each incorporating a different approach to reducing the energy used in paper making. The first of these two projects is focussed on optimising sheet drainage, aiming to present the dryer with a sheet having higher solids content than before. The second project aims to reduce specific steam usage by optimising the operation of the dryer hood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book presents physics-based models of bipolar power semiconductor devices and their implementation in MATLAB and Simulink. The devices are subdivided into different regions, and the operation in each region, along with the interactions at the interfaces which are analyzed using basic semiconductor physics equations that govern their behavior. The Fourier series solution is used to solve the ambipolar diffusion equation in the lightly doped drift region of the devices. In addition to the external electrical characteristics, internal physical and electrical information, such as the junction voltages and the carrier distribution in different regions of the device, can be obtained using the models. Table of Contents: Introduction to Power Semiconductor Device Modeling/Physics of Power Semiconductor Devices/Modeling of a Power Diode and IGBT/IGBT Under an Inductive Load-Switching Condition in Simulink/Parameter Extraction. © 2013 by Morgan & Claypool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates how the efficiency and robustness of a skilled rhythmic task compete against each other in the control of a bimanual movement. Human subjects juggled a puck in 2D through impacts with two metallic arms, requiring rhythmic bimanual actuation. The arms kinematics were only constrained by the position, velocity and time of impacts while the rest of the trajectory did not influence the movement of the puck. In order to expose the task robustness, we manipulated the task context in two distinct manners: the task tempo was assigned at four different values (hence manipulating the time available to plan and execute each impact movement individually); and vision was withdrawn during half of the trials (hence reducing the sensory inflows). We show that when the tempo was fast, the actuation was rhythmic (no pause in the trajectory) while at slow tempo, the actuation was discrete (with pause intervals between individual movements). Moreover, the withdrawal of visual information encouraged the rhythmic behavior at the four tested tempi. The discrete versus rhythmic behavior give different answers to the efficiency/robustness trade-off: discrete movements result in energy efficient movements, while rhythmic movements impact the puck with negative acceleration, a property preserving robustness. Moreover, we report that in all conditions the impact velocity of the arms was negatively correlated with the energy of the puck. This correlation tended to stabilize the task and was influenced by vision, revealing again different control strategies. In conclusion, this task involves different modes of control that balance efficiency and robustness, depending on the context. © 2008 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In view of its special features, the brushless doubly fed induction generator (BDFIG) shows high potentials to be employed as a variable-speed drive or wind generator. However, the machine suffers from low efficiency and power factor and also high level of noise and vibration due to spatial harmonics. These harmonics arise mainly from rotor winding configuration, slotting effects, and saturation. In this paper, analytical equations are derived for spatial harmonics and their effects on leakage flux, additional loss, noise, and vibration. Using the derived equations and an electromagnetic-thermal model, a simple design procedure is presented, while the design variables are selected based on sensitivity analyses. A multiobjective optimization method using an imperialist competitive algorithm as the solver is established to maximize efficiency, power factor, and power-to-weight ratio, as well as to reduce rotor spatial harmonic distortion and voltage regulation simultaneously. Several constraints on dimensions, magnetic flux densities, temperatures, vibration level, and converter voltage and rating are imposed to ensure feasibility of the designed machine. The results show a significant improvement in the objective function. Finally, the analytical results of the optimized structure are validated using finite-element method and are compared to the experimental results of the D180 frame size prototype BDFIG. © 1982-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the fundamental trade-offs involved in designing energy-regenerative suspensions, in particular, focusing on efficiency of power extraction and its effect on vehicle dynamics and control. It is shown that typical regenerative devices making use of linear-to-rotational elements can be modelled as a parallel arrangement of an inerter and a dissipative admittance. Taking account of typical adjustable parameters of the generator, it is shown, for a given suspension damping coefficient, that the power efficiency ratio scales with inertance. For a typical passenger vehicle, it is shown that there is a feasible compromise, namely that good efficiency is achievable with an inertance value that is not detrimental to vehicle performance. A prototype is designed and tested with a resistive termination and experimental results show good agreement between ideal and experimental admittances. The possibility to use dynamic (rather than purely resistive) loads to improve vehicle control without limiting the energy recovery is discussed. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A passively mode-locked diode end-pumped YVO4/Nd:YVO4 composite crystal laser with a five-mirror folded cavity was first demonstrated in this paper by using a low temperature semiconductor saturable absorber mirror grown by metal organic chemical vapor deposition. Both the Q-switching and continuous-wave mode locking operation were realized experimentally. A stable averaged output power of 10.15 W with pulse width of about 11.2-ps at a repetition rate of 113 MHz was obtained, and the optical-to-optical efficiency of 43% was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic light emitting diodes employing magnesium doped electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride (Mg: PTCDA) as electron injection layer and silver as cathode were demonstrated. As compared to Mg: Ag cathode, the combination of the Mg: PTCDA layer and silver provided enhanced electron injection into tris (8-quinolinolato) aluminium. The device with 1: 2 Mg: PTCDA and Ag showed an increase of about 12% in the maximum current efficiency, mainly due to the improved hole-electron balance, and an increase of about 28% in the maximum power efficiency, as compared to the control device using Mg: Ag cathode. The properties of Mg: PTCDA composites were studied as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have demonstrated a passively mode-locked diode end-pumped all-solid-state laser, which is composed of a Nd:Gd0.5Y0.5VO4 crystal and a folded cavity with a semiconductor saturable-absorber mirror grown by metal-organic chemical-vapor deposition. Stable cw mode locking with a 3.8-ps pulse duration at a repetition rate of 112 MHz was obtained. At 13.6 W of the incident pump power, a clean mode-locked fundamental-mode average output power of 3.9 W was achieved with an overall optical-to-optical efficiency of 29.0%, and the slope efficiency was 38.1%. (C) 2004 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic light emitting diodes using a mixed layer of electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride and electron donor copper phthalocyanine (PTCDA:CuPc) on indium tin oxide (ITO) anodes were fabricated. The device properties were found to be strongly dependent on the thickness of the PTCDA:CuPc film: both the power efficiency and the driving voltage of the device were optimized with a thickness of PTCDA:CuPc ranging from 10 to 20 nm. As compared to the conventional ITO/CuPc hole injection structure, the ITO/PTCDA:CuPc hole injection structure could remarkably enhance both the luminance and the power efficiencies of devices. A mechanism of static-induced, very efficient hole-electron pairs generation in mixed PTCDA:CuPc films was proposed to explain the experimental phenomena. The structural and optical properties of PTCDA:CuPc film were examined as well. (c) 2007 American Institute of Physics.