959 resultados para simple causal positioning
Resumo:
BACKGROUND: Dermatophyte identification in tinea capitis is essential for choosing the appropriate treatment and in tinea infections to identify the possible source. The failure of fungi to grow in cultures frequently occurs, especially in cases of previous antifungal therapy. OBJECTIVES: To develop a rapid polymerase chain reaction (PCR) sequencing assay for dermatophyte identification in tinea capitis and tinea corporis. MATERIAL AND METHODS: Fungal DNA was extracted from hair and skin samples that were confirmed to be positive by direct mycological examination. Dermatophytes were identified by the sequence of a 28S ribosomal DNA subunit amplicon generated by nested PCR. RESULTS: Nested PCR was found to be necessary to obtain amplicons in substantial amounts for dermatophyte identification by sequencing. The results agreed with those of classical mycological identification in 14 of 23, 6 of 10, and 20 of 23 cases of tinea capitis, tinea corporis and tinea pedis, respectively, from which a dermatophyte was obtained in culture. In seven of the 56 cases, another dermatophyte was identified, revealing previous misidentification. A dermatophyte was identified in 12 of 18, three of five, and four of nine cases of tinea capitis, tinea corporis and tinea pedis, respectively, in cases in which no dermatophyte grew in culture. CONCLUSIONS: Although the gold standard dermatophyte identification from clinical samples remains fungal cultures, the assay developed in the present study is especially suitable for tinea capitis. Improved sensitivity for the identification of dermatophyte species was obtained as it is possible to identify the dermatophyte when the fungus fails to grow in cultures.
Resumo:
Actualmente no se disponen de marcadores biológicos específicos para la cáncer de próstata produciéndose en muchas ocasiones biopsias prostáticas innecesarias o un sobretratamientos para cánceres indolentes. Existen cada vez más un número mayor de publicaciones sobre cómo los polimorfismos de nucleótido simple (SNP) se relacionan con la susceptibilidad al cáncer de próstata o predecir con mayor precisión qué grado de agresividad adquiere la enfermedad. Se presenta una revisión bibliográfica de las investigaciones publicadas en PubMed desde el año 2000 hasta el 2012 que ponen de manifiesto la relación de los SNP con el riesgo a padecer cáncer de próstata y con sus características anatomopatológicas.
Resumo:
In parasites, host specificity may result either from restricted dispersal capacity or from fixed coevolutionary host-parasite adaptations. Knowledge of those proximal mechanisms leading to particular host specificity is fundamental to understand host-parasite interactions and potential coevolution of parasites and hosts. The relative importance of these two mechanisms was quantified through infection and cross-infection experiments using mites and bats as a model. Monospecific pools of parasitic mites (Spinturnix myoti and S. andegavinus) were subjected either to individual bats belonging to their traditional, native bat host species, or to another substitute host species within the same bat genus (Myotis). The two parasite species reacted differently to these treatments. S. myoti exhibited a clear preference for, and had a higher fitness on, its native host, Myotis myotis. In contrast, S. andegavinus showed no host choice, although its fitness was higher on its native host M. daubentoni. The causal mechanisms mediating host specificity can apparently differ within closely related host-parasite systems.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants that improve plant nutrient acquisition and promote plant diversity. Although within-species genetic differences among AMF have been shown to differentially affect plant growth, very little is actually known about the degree of genetic diversity in AMF populations. This is largely because of difficulties in isolation and cultivation of the fungi in a clean system allowing reliable genotyping to be performed. A population of the arbuscular mycorrhizal fungus Glomus intraradices growing in an in vitro cultivation system was studied using newly developed simple sequence repeat (SSR), nuclear gene intron and mitochondrial ribosomal gene intron markers. The markers revealed a strong differentiation at the nuclear and mitochondrial level among isolates. Genotypes were nonrandomly distributed among four plots showing genetic subdivisions in the field. Meanwhile, identical genotypes were found in geographically distant locations. AMF genotypes showed significant preferences to different host plant species (Glycine max, Helianthus annuus and Allium porrum) used before the fungal in vitro culture establishment. Host plants in a field could provide a heterogeneous environment favouring certain genotypes. Such preferences may partly explain within-population patterns of genetic diversity.
Resumo:
We have defined structural features that are apparently important for the binding of four different, unrelated antigenic epitopes to the same major histocompatibility complex (MHC) class I molecule, H-2Kd. The four epitopes are recognized in the form of synthetic peptides by cytotoxic T lymphocytes of the appropriate specificity. By analysis of the relative potency of truncated peptides, we demonstrated that for each of the four epitopes, optimal antigenic activity was present in a peptide of 9 or 10 amino acid residues. A comparison of the relative competitor activity of the different-length peptides in a functional competition assay, as well as in a direct binding assay based on photoaffinity labeling of the Kd molecule, indicated that the enhanced potency of the peptides upon reduction in length was most likely due to a higher affinity of the shorter peptides for the Kd molecule. A remarkably simple motif that appears to be important for the specific binding of Kd-restricted peptides was identified by the analysis of peptides containing amino acid substitutions or deletions. The motif consists of two elements, a Tyr in the second position relative to the NH2 terminus and a hydrophobic residue with a large aliphatic side chain (Leu, Ile, or Val) at the COOH-terminal end of the optimal 9- or 10-mer peptides. We demonstrated that a simple peptide analogue (AYP6L) that incorporates the motif can effectively and specifically interact with the Kd molecule. Moreover, all of the additional Kd-restricted epitopes defined thus far in the literature contain the motif, and it may thus be useful for the prediction of new epitopes recognized by T cells in the context of this MHC class I molecule.
Resumo:
Mosaics have been commonly used as visual maps for undersea exploration and navigation. The position and orientation of an underwater vehicle can be calculated by integrating the apparent motion of the images which form the mosaic. A feature-based mosaicking method is proposed in this paper. The creation of the mosaic is accomplished in four stages: feature selection and matching, detection of points describing the dominant motion, homography computation and mosaic construction. In this work we demonstrate that the use of color and textures as discriminative properties of the image can improve, to a large extent, the accuracy of the constructed mosaic. The system is able to provide 3D metric information concerning the vehicle motion using the knowledge of the intrinsic parameters of the camera while integrating the measurements of an ultrasonic sensor. The experimental results of real images have been tested on the GARBI underwater vehicle
Resumo:
Correct positioning of the tibial component in total knee arthroplasty (TKA) must take into account both an optimal bone coverage (defined by a maximal cortical bearing with posteromedial and anterolateral support) and satisfactory patellofemoral tracking. Consequently, a compromise position must be found by the surgeon during the operation to simultaneously meet these two requirements. Moreover, tibial tray positioning depends upon the tibial torsion, which has been shown to act mainly in the proximal quarter of the tibia. Therefore, the correct application of the tibial tray is also theoretically related to the level of bone resection. In this study, we first quantified the torsional profile given by an optimal bone coverage for a symmetrical tibial tray design and for an asymmetrical one. Then, for the two types of tibial trays, we measured the angle difference between optimal bone coverage and an alignment on the middle of the tibial tubercule. Results showed that the values of the torsional profile given by the symmetrical tray were more scattered than those from the asymmetrical one. However, determination of the mean differential angle between the position providing optimal bone coverage and the one providing the best patellofemoral tracking indicated that the symmetrical prosthetic tray offered the best compromise between these two requirements. Although the tibiofemoral joint is known to be asymmetric in both shape and dimension, the asymmetrical tray chosen in this study was found to fulfill this compromise with more difficulty.
Resumo:
In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5' regulatory sequence variation in the corresponding genes is indeed increased. However, approximately 42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL.
Resumo:
Learning object economies are marketplaces for the sharing and reuse of learning objects (LO). There are many motivations for stimulating the development of the LO economy. The main reason is the possibility of providing the right content, at the right time, to the right learner according to adequate quality standards in the context of a lifelong learning process; in fact, this is also the main objective of education. However, some barriers to the development of a LO economy, such as the granularity and editability of LO, must be overcome. Furthermore, some enablers, such as learning design generation and standards usage, must be promoted in order to enhance LO economy. For this article, we introduced the integration of distributed learning object repositories (DLOR) as sources of LO that could be placed in adaptive learning designs to assist teachers’ design work. Two main issues presented as a result: how to access distributed LO, and where to place the LO in the learning design. To address these issues, we introduced two processes: LORSE, a distributed LO searching process, and LOOK, a micro context-based positioning process, respectively. Using these processes, the teachers were able to reuse LO from different sources to semi-automatically generate an adaptive learning design without leaving their virtual environment. A layered evaluation yielded good results for the process of placing learning objects from controlled learning object repositories into a learning design, and permitting educators to define different open issues that must be covered when they use uncontrolled learning object repositories for this purpose. We verified the satisfaction users had with our solution
Resumo:
Pseudomonas fluorescens EPS62e was selected during a screening procedure for its high efficacy in controlling infections by Erwinia amylovora, the causal agent of fire blight disease, on different plant materials. In field trials carried out in pear trees during bloom, EPS62e colonized flowers until the carrying capacity, providing a moderate efficacy of fire-blight control. The putative mechanisms of EPS62e antagonism against E. amylovora were studied. EPS62e did not produce antimicrobial compounds described in P. fluorescens species and only developed antagonism in King’s B medium, where it produced siderophores. Interaction experiments in culture plate wells including a membrane filter, which physically separated the cultures, confirmed that inhibition of E. amylovora requires cell-to-cell contact. The spectrum of nutrient assimilation indicated that EPS62e used significantly more or different carbon sources than the pathogen. The maximum growth rate and affinity for nutrients in immature fruit extract were higher in EPS62e than in E. amylovora, but the cell yield was similar. The fitness of EPS62e and E. amylovora was studied upon inoculation in immature pear fruit wounds and hypanthia of intact flowers under controlled-environment conditions. When inoculated separately, EPS62e grew faster in flowers, whereas E. amylovora grew faster in fruit wounds because of its rapid spread to adjacent tissues. However, in preventive inoculations of EPS62e, subsequent growth of EPS101 was significantly inhibited. It is concluded that cell-to-cell interference as well as differences in growth potential and the spectrum and efficiency of nutrient use are mechanisms of antagonism of EPS62e against E. amylovora