917 resultados para radial hydraulic conductivity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Geociências, 2016.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Florida is the second leading horticulture state in the United States with a total annual industry sale of over $12 Billion. Due to its competitive nature, agricultural plant production represents an extremely intensive practice with large amounts of water and fertilizer usage. Agrochemical and water management are vital for efficient functioning of any agricultural enterprise, and the subsequent nutrient loading from such agricultural practices has been a concern for environmentalists. A thorough understanding of the agrochemical and the soil amendments used in these agricultural systems is of special interest as contamination of soils can cause surface and groundwater pollution leading to ecosystem toxicity. The presence of fragile ecosystems such as the Everglades, Biscayne Bay and Big Cypress near enterprises that use such agricultural systems makes the whole issue even more imminent. Although significant research has been conducted with soils and soil mix, there is no acceptable method for determining the hydraulic properties of mixtures that have been subjected to organic and inorganic soil amendments. Hydro-physical characterization of such mixtures can facilitate the understanding of water retention and permeation characteristics of the commonly used mix which can further allow modeling of soil water interactions. The objective of this study was to characterize some of the locally and commercially available plant growth mixtures for their hydro-physical properties and develop mathematical models to correlate these acquired basic properties to the hydraulic conductivity of the mixture. The objective was also to model the response patterns of soil amendments present in those mixtures to different water and fertilizer use scenarios using the characterized hydro-physical properties with the help of Everglades-Agro-Hydrology Model. The presence of organic amendments helps the mixtures retain more water while the inorganic amendments tend to adsorb more nutrients due to their high surface area. The results of these types of characterization can provide a scientific basis for understanding the non-point source water pollution from horticulture production systems and assist in the development of the best management practices for the operation of environmentally sustainable agricultural enterprise

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Colombia coffee production is facing risks due to an increase in the variability and amount of rainfall, which may alter hydrological cycles and negatively influence yield quality and quantity. Shade trees in coffee plantations, however, are known to produce ecological benefits, such as intercepting rainfall and lowering its velocity, resulting in a reduced net-rainfall and higher water infiltration. In this case study, we measured throughfall and soil hydrological properties in four land use systems in Cauca, Colombia, that differed in stand structural parameters: shaded coffee, unshaded coffee, secondary forest and pasture. We found that throughfall was rather influenced by stand structural characteristics than by rainfall intensity. Lower throughfall was recorded in the shaded coffee compared to the other systems when rain gauges were placed at a distance of 1.0 m to the shade tree. The variability of throughfall was high in the shaded coffee, which was due to different canopy characteristics and irregular arrangements of shade tree species. Shaded coffee and secondary forest resembled each other in soil structural parameters, with an increase in saturated hydraulic conductivity and microporosity, whereas bulk density and macroporosity decreased, compared to the unshaded coffee and pasture. In this context tree-covered systems indicate a stronger resilience towards changing rainfall patterns, especially in mountainous areas where coffee is cultivated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coffea sp. is cultivated in large areas, using both conventional and organic management. However, information about the sustainability of these two management systems is still deficient. The objective of the present study was to evaluate the physical properties of soil cultivated with Conilon coffee (C. canephora) under organic and conventional management. Two areas cultivated with Conilon coffee (under organic and conventional management) and a fragment of Atlantic forest, used as a reference, were selected for the experiment. Soil granulometry, hydraulic conductivity, water retention curve, resistance to penetration, porosity, optimal hydric interval, and other physical characteristics were measured at depths of 0 to 10 and 10 to 20 cm. The data was submitted to multivariate and descriptive statistical analyses. Higher similarity was observed between the soil cultivated with Conilon coffee under organic management and the Atlantic forest soil. Soil resistance to penetration at 10, 30, 100, 500 and 1500 kPa, macro porosity, density and total porosity were the main physical properties that differentiated both management systems studied. The non-use of agricultural machinery and the addition of organic matter may be the main reasons for higher soil sustainability observed under organic management when compared with the conventional system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The model implicitly incorporates the effect of simultaneous pressure head and osmotic head on root water uptake, and does not require additional assumptions (additive or multiplicative) to derive the combined effect of water and salt stress. Simulation results showed that relative transpiration equals relative matric flux potential, which is defined as the matric flux potential calculated with an osmotic pressure head-dependent lower bound of integration, divided by the matric flux potential at the onset of limiting hydraulic conditions. In the falling rate phase, the osmotic head near the root surface was shown to increase in time due to decreasing root water extraction rates, causing a more gradual decline of relative transpiration than with water stress alone. Results furthermore show that osmotic stress effects on uptake depend on pressure head or water content, allowing a refinement of the approach in which fixed reduction factors based on the electrical conductivity of the saturated soil solution extract are used. One of the consequences is that osmotic stress is predicted to occur in situations not predicted by the saturation extract analysis approach. It is also shown that this way of combining salinity and water as stressors yields results that are different from a purely multiplicative approach. An analytical steady state solution is presented to calculate the solute content at the root surface, and compared with the outputs of the numerical model. Using the analytical solution, a method has been developed to estimate relative transpiration as a function of system parameters, which are often already used in vadose zone models: potential transpiration rate, root length density, minimum root surface pressure head, and soil theta-h and K-h functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hydraulic jump is the transition from a supercritical open channel flow to a subcritical regime. It is characterised by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air-water flow measurements were performed in hydraulic jump flows for a range of inflow Froude numbers. The experiments were conducted in a large-size facility using two types of phase-detection intrusive probes: i.e., single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The present study was focused on the turbulence characteristics of hydraulic jumps with partially-developed inflow conditions. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The present results highlighted some influence of the inflow Froude number onto the air bubble entrainment process. At the largest Froude numbers, the advected air bubbles were more thoroughly dispersed vertically, and larger amount of air bubbles were detected in the turbulent shear layer. In the air-water mixing layer, the maximum void fraction and bubble count rate data showed some longitudinal decay function in the flow direction. Such trends were previously reported in the literature. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The present data suggested some longitudinal decay of the turbulence intensity. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of CHANSON (2006,2007). The results provided the integral turbulent time and length scales of the eddy structures advecting the air bubbles in the developing shear layer. The experimental data showed that the auto-correlation time scale Txx was larger than the transverse cross-correlation time scale Txz. The integral turbulence length scale Lxz was a function of the inflow conditions, of the streamwise position (x-x1)/d1 and vertical elevation y/d1. Herein the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e., Lxz/d1 = 0.2 to 0.8, with Lxz increasing towards the free-surface. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. A linear relationship was found between the normalized maximum free-surface fluctuation and the inflow Froude number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. In this study scrap tire rubber was used as additional aggregate of mortars based on natural hydraulic lime NHL 3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained directly from industry and separated fine, medium and coarse fractions; 0 %, 18 %, 36 % and 54 % of the weight of binder, corresponding to 2.5 %, 5 % and 7.5 % of the weight of sand. As mortars based on NHL specifications became stricter with the current version of EN 459–1:2015, the influence of the rubber’s additions on the mortars’ fresh state, mechanical and physical performance is presented in this work: flow table consistency, water retention, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity are studied. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of geophysical methods, such as ground-penetrating radar (GPR), have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, the stochastic inversion of such data within a coupled geophysical-hydrological framework may allow for the effective estimation of vadose zone hydraulic parameters and their corresponding uncertainties. A critical issue in stochastic inversion is choosing prior parameter probability distributions from which potential model configurations are drawn and tested against observed data. A well chosen prior should reflect as honestly as possible the initial state of knowledge regarding the parameters and be neither overly specific nor too conservative. In a Bayesian context, combining the prior with available data yields a posterior state of knowledge about the parameters, which can then be used statistically for predictions and risk assessment. Here we investigate the influence of prior information regarding the van Genuchten-Mualem (VGM) parameters, which describe vadose zone hydraulic properties, on the stochastic inversion of crosshole GPR data collected under steady state, natural-loading conditions. We do this using a Bayesian Markov chain Monte Carlo (MCMC) inversion approach, considering first noninformative uniform prior distributions and then more informative priors derived from soil property databases. For the informative priors, we further explore the effect of including information regarding parameter correlation. Analysis of both synthetic and field data indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when we combine these data with a realistic, informative prior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT The power consumption and load capacity of agricultural machines have grown and the effects of pressure on the soil by tires have been still little investigated. In concern with sustainable development, the relationship machine-tire-soil must be in balance to give more consistency on the best use of tires for a given load. This study aimed to evaluate four tires of two constructive types, the bias belted tires and radial tires, both with respective rim diameters of 22.5 and 26.5 inches with variables measuring the footprint, elastic deformation, sinkage and resistance to penetration. A hydraulic press with an attachment shaft for tire mounting and a box of soil in which the tire has been imposed on a load of 53.00 kN using nominal pressures recommended by the tire manufacturer. The radial construction tire with rim diameter of 26.5 inches obtained less sinkage and resistance to penetration; however, greater elastic deformation and footprint compared to other tires. The bias-belted tire with 22.5-inch rim presented the highest resistance to penetration and the lowest elastic deformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this master’s thesis was to design and simulate a wind powered hydraulic heating system that can operate independently in remote places where the use of electricity is not possible. Components for the system were to be selected in such a way that the conditions for manufacture, use and economic viability are the as good as possible. Savonius rotor was chosen for wind turbine, due to its low cut in speed and robust design. Savonius rotor produces kinetic energy in wide wind speed range and it can withstand high wind gusts. Radial piston pump was chosen for the flow source of the hydraulic heater. Pump type was selected due to its characteristics in low rotation speeds and high efficiency. Volume flow from the pump is passed through the throttle orifice. Pressure drop over the orifice causes the hydraulic oil to heat up and, thus, creating thermal energy. Thermal energy in the oil is led to radiator where it conducts heat to the environment. The hydraulic heating system was simulated. For this purpose a mathematical models of chosen components were created. In simulation wind data gathered by Finnish meteorological institute for 167 hours was used as input. The highest produced power was achieved by changing the orifice diameter so that the rotor tip speed ratio follows the power curve. This is not possible to achieve without using electricity. Thus, for the orifice diameter only one, the optimal value was defined. Results from the simulation were compared with investment calculations. Different parameters effecting the investment profitability were altered in sensitivity analyses in order to define the points of investment profitability. Investment was found to be profitable only with high average wind speeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study aimed to evaluate the radial profile and the uniformity of water distribution of sprinkler manufactured by the company NaanDanJain, model 427 1/2 '' M and nozzle with 2.8 mm of internal diameter, operating at pressures of 150, 200, 300 and 400 kPa and five positions of the deflector (0, 20, 50, 80 and 100%). For the determination of the parameters evaluated, the grid method was used and with the help of computer application CATCH 3D, overlapping layers of water depths was calculated with ten spacing. The results show that the deflector adjustment influences the radius of wetness and the distribution profile while the uniformity of water application showed as an important mechanism, since it permits different behavior for the sprinkler, ensuring wide track of utilization of the equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide a simple method for writing the Dirac-Born-Infeld equations of a Dp-brane in an arbitrary static background whose metric depends only on the holographic radial coordinate z. Using this method we revisit the Karch-O'Bannon procedure to calculate the dc conductivity in the presence of constant electric and magnetic fields for backgrounds where the boundary is four- or three-dimensional and satisfies homogeneity and isotropy. We find a frame-independent expression for the dc conductivity tensor. For particular backgrounds we recover previous results on holographic metals and strange metals. © 2013 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One observed vibration mode for Tainter gate skinplates involves the bending of the skinplate about a horizontal nodal line. This vibration mode can be approximated as a streamwise rotational vibration about the horizontal nodal line. Such a streamwise rotational vibration of a Tainter gate skinplate must push away water from the portion of the skinplate rotating into the reservoir and draw water toward the gate over that portion of the skinplate receding from the reservoir. The induced pressure is termed the push-and-draw pressure. In the present paper, this push-and-draw pressure is analyzed using the potential theory developed for dissipative wave radiation problems. In the initial analysis, the usual circular-arc skinplate is replaced by a vertical, flat, rigid weir plate so that theoretical calculations can be undertaken. The theoretical push-and-draw pressure is used in the derivation of the non-dimensional equation of motion of the flow-induced rotational vibrations. Non-dimensionalization of the equation of motion permits the identification of the dimensionless equivalent added mass and the wave radiation damping coefficients. Free vibration tests of a vertical, flat, rigid weir plate model, both in air and in water, were performed to measure the equivalent added mass and the wave radiation damping coefficients. Experimental results compared favorably with the theoretical predictions, thus validating the theoretical analysis of the equivalent added mass and wave radiation damping coefficients as a prediction tool for flow-induced vibrations. Subsequently, the equation of motion of an inclined circular-arc skinplate was developed by incorporating a pressure correction coefficient, which permits empirical adaptation of the results from the hydrodynamic pressure analysis of the vertical, flat, rigid weir plate. Results from in-water free vibration tests on a 1/31-scale skinplate model of the Folsom Dam Tainter gate are used to demonstrate the utility of the equivalent added mass coefficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distribution, accumulation and diagenesis of surficial sediments in coastal and continental shelf systems follow complex chains of localized processes and form deposits of great spatial variability. Given the environmental and economic relevance of ocean margins, there is growing need for innovative geophysical exploration methods to characterize seafloor sediments by more than acoustic properties. A newly conceptualized benthic profiling and data processing approach based on controlled source electromagnetic (CSEM) imaging permits to coevally quantify the magnetic susceptibility and the electric conductivity of shallow marine deposits. The two physical properties differ fundamentally insofar as magnetic susceptibility mostly assesses solid particle characteristics such as terrigenous or iron mineral content, redox state and contamination level, while electric conductivity primarily relates to the fluid-filled pore space and detects salinity, porosity and grain-size variations. We develop and validate a layered half-space inversion algorithm for submarine multifrequency CSEM with concentric sensor configuration. Guided by results of modeling, we modified a commercial land CSEM sensor for submarine application, which was mounted into a nonconductive and nonmagnetic bottom-towed sled. This benthic EM profiler Neridis II achieves 25 soundings/second at 3-4 knots over continuous profiles of up to hundred kilometers. Magnetic susceptibility is determined from the 75 Hz in-phase response (90% signal originates from the top 50 cm), while electric conductivity is derived from the 5 kHz out-of-phase (quadrature) component (90% signal from the top 92 cm). Exemplary survey data from the north-west Iberian margin underline the excellent sensitivity, functionality and robustness of the system in littoral (~0-50 m) and neritic (~50-300 m) environments. Susceptibility vs. porosity cross-plots successfully identify known lithofacies units and their transitions. All presently available data indicate an eminent potential of CSEM profiling for assessing the complex distribution of shallow marine surficial sediments and for revealing climatic, hydrodynamic, diagenetic and anthropogenic factors governing their formation.