972 resultados para quantum open system


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we attempt to develop a sensitive detection method for glucose with the combination of the unique optical property of quantum dots and the specificity of enzymatic reactions. With glucose and hydroquinone as substrates, benzoquinone that intensively quenches the photoluminescence of quantum dots can be produced via the catalysis of bienzyme (glucose oxidase and horseradish peroxidase) system. A relatively low detection limit of 1.0 x 10(-8) mol/L can be achieved. Two linear ranges from 1.0 x 10(-6) to 1.5 x 10(-4) M and from 1.5 x 10(-4) to 1.0 x 10(-3) M were obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Herein, a sensitive and selective sensor for biothiols based on the recovered fluorescence of the CdTe quantum dots (QDs)-Hg(II) system is reported. Fluorescence of QDs could be quenched greatly by Hg(II). In the presence of biothiols, such as glutathione (GSH), homocysteine (Hcy), and cysteine (Cys), however, Hg(H) preferred to react with them to form the Hg(II)-S bond because of the strong affinity with the thiols of biothiols rather than quenching the fluorescence of the QDs. Thus, the fluorescence of CdTe QDs was recovered. The restoration ability followed the order GSH > Hcy > Cys due to the decreased steric hindrance effect. A good linear relationship was obtained from 0.6 to 20.0 mu mol L-1 for GSH and from 2.0 to 20.0 mu mol L-1 for Cys, respectively. The detection limits of GSH and Cys were 0.1 and 0.6 mu mol L-1, respectively. In addition, the method showed a high selectivity for Cys among the other 19 amino acids. Furthermore, it succeeded in detecting biothiols in the Hela cell.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gough, John, (2004) 'Holevo-Ordering and the Continuous-Time Limit for Open Floquet Dynamics', Letters in Mathematical Physcis 67(3) pp.207-221 RAE2008

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strong coupling between a two-level system (TLS) and bosonic modes produces dramatic quantum optics effects. We consider a one-dimensional continuum of bosons coupled to a single localized TLS, a system which may be realized in a variety of plasmonic, photonic, or electronic contexts. We present the exact many-body scattering eigenstate obtained by imposing open boundary conditions. Multiphoton bound states appear in the scattering of two or more photons due to the coupling between the photons and the TLS. Such bound states are shown to have a large effect on scattering of both Fock- and coherent-state wave packets, especially in the intermediate coupling-strength regime. We compare the statistics of the transmitted light with a coherent state having the same mean photon number: as the interaction strength increases, the one-photon probability is suppressed rapidly, and the two- and three-photon probabilities are greatly enhanced due to the many-body bound states. This results in non-Poissonian light. © 2010 The American Physical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Currents across thin insulators are commonly taken as single electrons moving across classically forbidden regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining quantum transport from a different perspective, i.e., by explicit treatment of electron-electron interactions, we evaluate different single particle approximations with specific application to tunneling in metal-molecule-metal junctions. We find maximizing the overlap of a Slater determinant composed of single-particle states to the many-body current-carrying state is more important than energy minimization for defining single-particle approximations in a system with open boundary conditions. Thus the most suitable single particle effective potential is not one commonly in use by electronic structure methods, such as the Hartree-Fock or Kohn-Sham approximations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantum discord quantifies nonclassical correlations in a quantum system including those not captured by entanglement. Thus, only states with zero discord exhibit strictly classical correlations. We prove that these states are negligible in the whole Hilbert space: typically a state picked out at random has positive discord and, given a state with zero discord, a generic arbitrarily small perturbation drives it to a positive-discord state. These results hold for any Hilbert-space dimension and have direct implications for quantum computation and for the foundations of the theory of open systems. In addition, we provide a simple necessary criterion for zero quantum discord. Finally, we show that, for almost all positive-discord states, an arbitrary Markovian evolution cannot lead to a sudden, permanent vanishing of discord.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a study of the behavior of two different figures of merit for quantum correlations, entanglement of formation and quantum discord, under quantum channels showing how the former can, counterintuitively, be more resilient to such environments spoiling effects. By exploiting strict conservation relations between the two measures and imposing necessary constraints on the initial conditions we are able to explicitly show this predominance is related to build-up of the system-environment correlations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a system composed of a qubit interacting with a quartic (undriven) nonlinear oscillator (NLO) through a conditional displacement Hamiltonian. We show that even a modest nonlinearity can enhance and stabilize the quantum entanglement dynamically generated between the qubit and the NLO. In contrast to the linear case, in which the entanglement is known to oscillate periodically between zero and its maximal value, the nonlinearity suppresses the dynamical decay of the entanglement once it is established. While the entanglement generation is due to the conditional displacements, as noted in several works before, the suppression of its decay is related to the presence of squeezing and other complex processes induced by two- and four-phonon interactions. Finally, we solve the respective Markovian master equation, showing that the previous features are preserved also when the system is open.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the experimental reconstruction of the nonequilibrium work probability distribution in a closed quantum system, and the study of the corresponding quantum fluctuation relations. The experiment uses a liquid-state nuclear magnetic resonance platform that offers full control on the preparation and dynamics of the system. Our endeavors enable the characterization of the out-of-equilibrium dynamics of a quantum spin from a finite-time thermodynamics viewpoint.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the non-equilibrium dynamics of a simple system consisting of interacting spin-1/2 particles subjected to a collective damping. The model is close to situations that can be engineered in hybrid electro/opto-mechanical settings. Making use of large-deviation theory, we find a Gallavotti-Cohen symmetry in the dynamics of the system as well as evidence for the coexistence of two dynamical phases with different activity levels. We show that additional damping processes smooth out this behavior. Our analytical results are backed up by Monte Carlo simulations that reveal the nature of the trajectories contributing to the different dynamical phases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of time is associated with a positive mean entropy production. Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated spin-1/2 system following fast quenches of an external magnetic field and experimentally demonstrate that it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic process and its time-reverse. Our result addresses the concept of irreversibility from a microscopic quantum standpoint.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is on the implementation of a dual axis positioning system controller. The system was designed to be used for space-dependent ultrasound signal acquisition problems, such as pressure field mapping. The work developed can be grouped in two main subjects: hardware and software. Each axis includes one stepper motor connected to a driver circuit, which is then connected to a processing unit. The graphical user interface is simple and clear for the user. The system resolution was computed as 127 mu m with an accuracy of 2.44 mu m. Although the target application is ultrasound signal acquisition, the controller can be applied to other devices that has up to four stepper motors. The application was developed as an open source software, thus it can be used or changed to fit different purposes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge.