928 resultados para planning model
Resumo:
A mathematical model and a methodology to solve the transmission network expansion planning problem with security constraints are presented. The methodology allows one to find an optimal and reliable transmission network expansion plan using a DC model to represent the electrical network. The security (n-1) criterion is used. The model presented is solved using a genetic algorithm designed to solve the reliable expansion planning in an efficient way. The results obtained for several known systems from literature show the excellent performance of the proposed methodology. A comparative analysis of the results obtained with the proposed methodology is also presented.
Resumo:
An algorithm is presented that finds the optimal plan long-term transmission for till cases studied, including relatively large and complex networks. The knowledge of optimal plans is becoming more important in the emerging competitive environment, to which the correct economic signals have to be sent to all participants. The paper presents a new specialised branch-and-bound algorithm for transmission network expansion planning. Optimality is obtained at a cost, however: that is the use of a transportation model for representing the transmission network, in this model only the Kirchhoff current law is taken into account (the second law being relaxed). The expansion problem then becomes an integer linear program (ILP) which is solved by the proposed branch-and-bound method without any further approximations. To control combinatorial explosion the branch- and bound algorithm is specialised using specific knowledge about the problem for both the selection of candidate problems and the selection of the next variable to be used for branching. Special constraints are also used to reduce the gap between the optimal integer solution (ILP program) and the solution obtained by relaxing the integrality constraints (LP program). Tests have been performed with small, medium and large networks available in the literature.
Resumo:
This paper presents two mathematical models and one methodology to solve a transmission network expansion planning problem considering uncertainty in demand. The first model analyzed the uncertainty in the system as a whole; then, this model considers the uncertainty in the total demand of the power system. The second one analyzed the uncertainty in each load bus individually. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The models presented are solved using a specialized genetic algorithm. The results obtained for several known systems from literature show that cheaper plans can be found satisfying the uncertainty in demand.
Resumo:
An approach for solving reactive power planning problems is presented, which is based on binary search techniques and the use of a special heuristic to obtain a discrete solution. Two versions were developed, one to run on conventional (sequential) computers and the other to run on a distributed memory (hypercube) machine. This latter parallel processing version employs an asynchronous programming model. Once the set of candidate buses has been defined, the program gives the location and size of the reactive sources needed(if any) in keeping with operating and security constraints.
Resumo:
This paper investigates properties of integer programming models for a class of production planning problems. The models are developed within a decision support system to advise a sales team of the products on which to focus their efforts in gaining new orders in the short term. The products generally require processing on several manufacturing cells and involve precedence relationships. The cells are already (partially) committed with products for stock and to satisfy existing orders and therefore only the residual capacities of each cell in each time period of the planning horizon are considered. The determination of production recommendations to the sales team that make use of residual capacities is a nontrivial optimization problem. Solving such models is computationally demanding and techniques for speeding up solution times are highly desirable. An integer programming model is developed and various preprocessing techniques are investigated and evaluated. In addition, a number of cutting plane approaches have been applied. The performance of these approaches which are both general and application specific is examined.
Resumo:
The data of four networks that can be used in carrying out comparative studies with methods for transmission network expansion planning are given. These networks are of various types and different levels of complexity. The main mathematical formulations used in transmission expansion studies-transportation models, hybrid models, DC power flow models, and disjunctive models are also summarised and compared. The main algorithm families are reviewed-both analytical, combinatorial and heuristic approaches. Optimal solutions are not yet known for some of the four networks when more accurate models (e.g. The DC model) are used to represent the power flow equations-the state of the art with regard to this is also summarised. This should serve as a challenge to authors searching for new, more efficient methods.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A branch and bound (B& B) algorithm using the DC model, to solve the power system transmission expansion planning by incorporating the electrical losses in network modelling problem is presented. This is a mixed integer nonlinear programming (MINLP) problem, and in this approach, the so-called fathoming tests in the B&B algorithm were redefined and a nonlinear programming (NLP) problem is solved in each node of the B& B tree, using an interior-point method. Pseudocosts were used to manage the development of the B&B tree and to decrease its size and the processing time. There is no guarantee of convergence towards global optimisation for the MINLP problem. However, preliminary tests show that the algorithm easily converges towards the best-known solutions or to the optimal solutions for all the tested systems neglecting the electrical losses. When the electrical losses are taken into account, the solution obtained using the Garver system is better than the best one known in the literature.
Resumo:
The present work introduces a new strategy of induction machines speed adjustment using an adaptive PID (Proportional Integral Derivative) digital controller with gain planning based on the artificial neural networks. This digital controller uses an auxiliary variable to determine the ideal induction machine operating conditions and to establish the closed loop gain of the system. The auxiliary variable value can be estimated from the information stored in a general-purpose artificial neural network based on CMAC (Cerebellar Model Articulation Controller).
Resumo:
This work presents a branch-and-bound algorithm to solve the multi-stage transmission expansion planning problem. The well known transportation model is employed, nevertheless the algorithm can be extended to hybrid models or to more complex ones such as the DC model. Tests with a realistic power system were carried out in order to show the performance of the algorithm for the expansion plan executed for different time frames. © 2005 IEEE.
Resumo:
This paper presents a mathematical model and a methodology to solve the transmission network expansion planning problem with security constraints in full competitive market, assuming that all generation programming plans present in the system operation are known. The methodology let us find an optimal transmission network expansion plan that allows the power system to operate adequately in each one of the generation programming plans specified in the full competitive market case, including a single contingency situation with generation rescheduling using the security (n-1) criterion. In this context, the centralized expansion planning with security constraints and the expansion planning in full competitive market are subsets of the proposal presented in this paper. The model provides a solution using a genetic algorithm designed to efficiently solve the reliable expansion planning in full competitive market. The results obtained for several known systems from the literature show the excellent performance of the proposed methodology.
Resumo:
Bit performance prediction has been a challenging problem for the petroleum industry. It is essential in cost reduction associated with well planning and drilling performance prediction, especially when rigs leasing rates tend to follow the projects-demand and barrel-price rises. A methodology to model and predict one of the drilling bit performance evaluator, the Rate of Penetration (ROP), is presented herein. As the parameters affecting the ROP are complex and their relationship not easily modeled, the application of a Neural Network is suggested. In the present work, a dynamic neural network, based on the Auto-Regressive with Extra Input Signals model, or ARX model, is used to approach the ROP modeling problem. The network was applied to a real oil offshore field data set, consisted of information from seven wells drilled with an equal-diameter bit.
Resumo:
In this paper, a method for solving the short term transmission network expansion planning problem is presented. This is a very complex mixed integer nonlinear programming problem that presents a combinatorial explosion in the search space. In order to And a solution of excellent quality for this problem, a constructive heuristic algorithm is presented in this paper. In each step of the algorithm, a sensitivity index is used to add a circuit (transmission line or transformer) or a capacitor bank (fixed or variable) to the system. This sensitivity index is obtained solving the problem considering the numbers of circuits and capacitors banks to be added (relaxed problem), as continuous variables. The relaxed problem is a large and complex nonlinear programming and was solved through a higher order interior point method. The paper shows results of several tests that were performed using three well-known electric energy systems in order to show the possibility and the advantages of using the AC model. ©2007 IEEE.
Resumo:
This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering uncertainty in demand and generation. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The model presented results in an optimization problem that is solved using a specialized genetic algorithm. The results obtained for known systems from the literature show that cheaper plans can be found satisfying the uncertainty in demand and generation. ©2008 IEEE.
Resumo:
This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering open access. The methodology finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with multiples generation scenarios. The model presented is solved using a specialized genetic algorithm. The methodology is tested in a system from the literature. ©2008 IEEE.