932 resultados para phase change


Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the epoch when the first collapsed structures formed (6<z<50) our Universe went through an extended period of changes. Some of the radiation from the first stars and accreting black holes in those structures escaped and changed the state of the Intergalactic Medium (IGM). The era of this global phase change in which the state of the IGM was transformed from cold and neutral to warm and ionized, is called the Epoch of Reionization.In this thesis we focus on numerical methods to calculate the effects of this escaping radiation. We start by considering the performance of the cosmological radiative transfer code C2-Ray. We find that although this code efficiently and accurately solves for the changes in the ionized fractions, it can yield inaccurate results for the temperature changes. We introduce two new elements to improve the code. The first element, an adaptive time step algorithm, quickly determines an optimal time step by only considering the computational cells relevant for this determination. The second element, asynchronous evolution, allows different cells to evolve with different time steps. An important constituent of methods to calculate the effects of ionizing radiation is the transport of photons through the computational domain or ``ray-tracing''. We devise a novel ray tracing method called PYRAMID which uses a new geometry - the pyramidal geometry. This geometry shares properties with both the standard Cartesian and spherical geometries. This makes it on the one hand easy to use in conjunction with a Cartesian grid and on the other hand ideally suited to trace radiation from a radially emitting source. A time-dependent photoionization calculation not only requires tracing the path of photons but also solving the coupled set of photoionization and thermal equations. Several different solvers for these equations are in use in cosmological radiative transfer codes. We conduct a detailed and quantitative comparison of four different standard solvers in which we evaluate how their accuracy depends on the choice of the time step. This comparison shows that their performance can be characterized by two simple parameters and that the C2-Ray generally performs best.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the casting of metals, tundish flow, welding, converters, and other metal processing applications, the behaviour of the fluid surface is important. In aluminium alloys, for example, oxides formed on the surface may be drawn into the body of the melt where they act as faults in the solidified product affecting cast quality. For this reason, accurate description of wave behaviour, air entrapment, and other effects need to be modelled, in the presence of heat transfer and possibly phase change. The authors have developed a single-phase algorithm for modelling this problem. The Scalar Equation Algorithm (SEA) (see Refs. 1 and 2), enables the transport of the property discontinuity representing the free surface through a fixed grid. An extension of this method to unstructured mesh codes is presented here, together with validation. The new method employs a TVD flux limiter in conjunction with a ray-tracing algorithm, to ensure a sharp bound interface. Applications of the method are in the filling and emptying of mould cavities, with heat transfer and phase change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminium cells involve a range of complex physical processes which act simultaneously to provide a narrow satisfactory operating range. These processes involve electromagnetic fields, coupled with heat transfer and phase change, two phase fluid flow with a range of complexities plus the development of stress in the cell structure. All of these phenomena are coupled in some significant sense and so to provide a comprehensive model of these processes involves their representation simultaneously. Conventionally, aspects of the process have been modeled separately using uncoupled estimates of the effects of the other phenomena; this has enabled the use of standard commercial CFD and FEA tools. In this paper we will describe an approach to the modeling of aluminium cells which describes all the physics simultaneously. This approach uses a finite volume approximation for each of the phenomena and facilitates their interactions directly in the modeling-the complex geometries involved are addressed by using unstructured meshes. The very challenging issues to be overcome in this venture will be outlined and some preliminary results will be shown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O gradual consumo de energia primária a nível mundial deu origem a uma crise não só ambiental como também económica, proveniente das limitações das reservas energéticas e do fornecimento. Estas inquietações têm levado a um estudo cada vez mais aprofundado no que concerne à eficiência energética de edifícios. É neste contexto que surge o estudo da aplicação dos materiais de mudança de fase (PCM) na térmica dos edifícios. O presente trabalho consiste no estudo da influência da introdução de materiais de mudança de fase no comportamento térmico de um edifício. Foi analisada uma simulação numérica para um sistema solar passivo de ganho direto, por um programa de simulação designado EXTEND™. Efetuou-se, também, o estudo paramétrico de determinadas propriedades associadas aos materiais de mudança de fase. Após a análise, foi testado o impacto, em termos de conforto, da utilização de materiais de mudança de fase em sistemas solares passivos de ganho direto.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An electrolytic cell for Aluminium production contains molten metal and molten electrolyte, which are subject to high dc-currents and magnetic fields. Lorentz forces arising from the cross product of current and magnetic field may amplify natural gravity waves at the interface between the two fluids, leading to short circuits in extreme cases. The external magnetic field and current distribution in the production cell is computed through a detailed finite element analysis at Torino Polytechnic. The results are then used to compute the magnetohydrodynamic and thermal effects in the aluminium/electrolyte bath. Each cell has lateral dimensions of 6m x 2m, whilst the bath depth is only 30cm. the electrically resistive electrolyte path, which is critical in the operation of the cell, has layer depth of only a few centimetres below each carbon anode. Because the shallow dimensions of the liquid layer a finite-volume shallow-layer technique has been used at Greenwich to compute the resulting flow-field and interface perturbations. The information obtained from this method, i.e. depth averaged velocities and aluminium/electrolyte interface position is then embedded in the three-dimensional finite volume code PHYSICA and will be used to compute the heat transfer and phase change in the cell.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La modélisation de la cryolite, utilisée dans la fabrication de l’aluminium, implique plusieurs défis, notament la présence de discontinuités dans la solution et l’inclusion de la difference de densité entre les phases solide et liquide. Pour surmonter ces défis, plusieurs éléments novateurs ont été développés dans cette thèse. En premier lieu, le problème du changement de phase, communément appelé problème de Stefan, a été résolu en deux dimensions en utilisant la méthode des éléments finis étendue. Une formulation utilisant un multiplicateur de Lagrange stable spécialement développée et une interpolation enrichie a été utilisée pour imposer la température de fusion à l’interface. La vitesse de l’interface est déterminée par le saut dans le flux de chaleur à travers l’interface et a été calculée en utilisant la solution du multiplicateur de Lagrange. En second lieu, les effets convectifs ont été inclus par la résolution des équations de Stokes dans la phase liquide en utilisant la méthode des éléments finis étendue aussi. Troisièmement, le changement de densité entre les phases solide et liquide, généralement négligé dans la littérature, a été pris en compte par l’ajout d’une condition aux limites de vitesse non nulle à l’interface solide-liquide pour respecter la conservation de la masse dans le système. Des problèmes analytiques et numériques ont été résolus pour valider les divers composants du modèle et le système d’équations couplés. Les solutions aux problèmes numériques ont été comparées aux solutions obtenues avec l’algorithme de déplacement de maillage de Comsol. Ces comparaisons démontrent que le modèle par éléments finis étendue reproduit correctement le problème de changement phase avec densités variables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transient power dissipation profiles in handheld electronic devices alternate between high and low power states depending on usage. Capacitive thermal management based on phase change materials potentially offers a fan-less thermal management for such transient profiles. However, such capacitive management becomes feasible only if there is a significant enhancement in the enthalpy change per unit volume of the phase change material since existing bulk materials such as paraffin fall short of requirements. In this thesis I propose novel nanostructured thin-film materials that can potentially exhibit significantly enhanced volumetric enthalpy change. Using fundamental thermodynamics of phase transition, calculations regarding the enhancement resulting from superheating in such thin film systems is conducted. Furthermore design of a microfabricated calorimeter to measure such enhancements is explained in detail. This work advances the state-of-art of phase change materials for capacitive cooling of handheld devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A battery powered air-conditioning device was developed to provide an improved thermal comfort level for individuals in inadequately cooled environments. This device is a battery powered air-conditioning system with the phase change material (PCM) for heat storage. The condenser heat is stored in the PCM during the cooling operation and is discharged while the battery is charged by using the vapor compression cycle as a thermosiphon loop. The main focus of the current research was on the development of the cooling system. The cooling capacity of the vapor compression cycle measured was 165.6 W with system COP at 2.85. It was able to provide 2 hours cooling without discharging heat to the ambient. The PCM was recharged in nearly 8 hours under thermosiphon mode.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2D materials have attracted tremendous attention due to their unique physical and chemical properties since the discovery of graphene. Despite these intrinsic properties, various modification methods have been applied to 2D materials that yield even more exciting results. Among all modification methods, the intercalation of 2D materials provides the highest possible doping and/or phase change to the pristine 2D materials. This doping effect highly modifies 2D materials, with extraordinary electrical transport as well as optical, thermal, magnetic, and catalytic properties, which are advantageous for optoelectronics, superconductors, thermoelectronics, catalysis and energy storage applications. To study the property changes of 2D materials, we designed and built a planar nanobattery that allows electrochemical ion intercalation in 2D materials. More importantly, this planar nanobattery enables characterization of electrical, optical and structural properties of 2D materials in situ and real time upon ion intercalation. With this device, we successfully intercalated Li-ions into few layer graphene (FLG) and ultrathin graphite, heavily dopes the graphene to 0.6 x 10^15 /cm2, which simultaneously increased its conductivity and transmittance in the visible range. The intercalated LiC6 single crystallite achieved extraordinary optoelectronic properties, in which an eight-layered Li intercalated FLG achieved transmittance of 91.7% (at 550 nm) and sheet resistance of 3 ohm/sq. We extend the research to obtain scalable, printable graphene based transparent conductors with ion intercalation. Surfactant free, printed reduced graphene oxide transparent conductor thin film with Na-ion intercalation is obtained with transmittance of 79% and sheet resistance of 300 ohm/sq (at 550 nm). The figure of merit is calculated as the best pure rGO based transparent conductors. We further improved the tunability of the reduced graphene oxide film by using two layers of CNT films to sandwich it. The tunable range of rGO film is demonstrated from 0.9 um to 10 um in wavelength. Other ions such as K-ion is also studied of its intercalation chemistry and optical properties in graphitic materials. We also used the in situ characterization tools to understand the fundamental properties and improve the performance of battery electrode materials. We investigated the Na-ion interaction with rGO by in situ Transmission electron microscopy (TEM). For the first time, we observed reversible Na metal cluster (with diameter larger than 10 nm) deposition on rGO surface, which we evidenced with atom-resolved HRTEM image of Na metal and electron diffraction pattern. This discovery leads to a porous reduced graphene oxide sodium ion battery anode with record high reversible specific capacity around 450 mAh/g at 25mA/g, a high rate performance of 200 mAh/g at 250 mA/g, and stable cycling performance up to 750 cycles. In addition, direct observation of irreversible formation of Na2O on rGO unveils the origin of commonly observed low 1st Columbic Efficiency of rGO containing electrodes. Another example for in situ characterization for battery electrode is using the planar nanobattery for 2D MoS2 crystallite. Planar nanobattery allows the intrinsic electrical conductivity measurement with single crystalline 2D battery electrode upon ion intercalation and deintercalation process, which is lacking in conventional battery characterization techniques. We discovered that with a “rapid-charging” process at the first cycle, the lithiated MoS2 undergoes a drastic resistance decrease, which in a regular lithiation process, the resistance always increases after lithiation at its final stage. This discovery leads to a 2- fold increase in specific capacity with with rapid first lithiated MoS2 composite electrode material, compare with the regular first lithiated MoS2 composite electrode material, at current density of 250 mA/g.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crosswell data set contains a range of angles limited only by the geometry of the source and receiver configuration, the separation of the boreholes and the depth to the target. However, the wide angles reflections present in crosswell imaging result in amplitude-versus-angle (AVA) features not usually observed in surface data. These features include reflections from angles that are near critical and beyond critical for many of the interfaces; some of these reflections are visible only for a small range of angles, presumably near their critical angle. High-resolution crosswell seismic surveys were conducted over a Silurian (Niagaran) reef at two fields in northern Michigan, Springdale and Coldspring. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. Combining the results from images obtained from above with those from beneath provides additional information, by exhibiting ranges of angles that are different for the two images, especially for reflectors at shallow depths, and second, by providing additional constraints on the solutions for Zoeppritz equations. Inversion of seismic data for impedance has become a standard part of the workflow for quantitative reservoir characterization. Inversion of crosswell data using either deterministic or geostatistical methods can lead to poor results with phase change beyond the critical angle, however, the simultaneous pre-stack inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Deterministic inversion is designed to yield only a single model of elastic properties (best-fit), while the geostatistical inversion produces multiple models (realizations) of elastic properties, lithology and reservoir properties. Geostatistical inversion produces results with far more detail than deterministic inversion. The magnitude of difference in details between both types of inversion becomes increasingly pronounced for thinner reservoirs, particularly those beyond the vertical resolution of the seismic. For any interface imaged from above and from beneath, the results AVA characters must result from identical contrasts in elastic properties in the two sets of images, albeit in reverse order. An inversion approach to handle both datasets simultaneously, at pre-critical angles, is demonstrated in this work. The main exploration problem for carbonate reefs is determining the porosity distribution. Images of elastic properties, obtained from deterministic and geostatistical simultaneous inversion of a high-resolution crosswell seismic survey were used to obtain the internal structure and reservoir properties (porosity) of Niagaran Michigan reef. The images obtained are the best of any Niagaran pinnacle reef to date.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As nuclear energy systems become more advanced, the materials encompassing them need to perform at higher temperatures for longer periods of time. In this Master’s thesis we experiment with an oxide dispersion strengthened (ODS) austenitic steel that has been recently developed. ODS materials have a small concentration of nano oxide particles dispersed in their matrix, and typically have higher strength and better extreme temperature creep resistance characteristics than ordinary steels. However, no ODS materials have ever been installed in a commercial power reactor to date. Being a newer research material, there are many unanswered phenomena that need to be addressed regarding the performance under irradiation. Furthermore, due to the ODS material traditionally needing to follow a powder metallurgy fabrication route, there are many processing parameters that need to be optimized before achieving a nuclear grade material specification. In this Master’s thesis we explore the development of a novel ODS processing technology conducted in Beijing, China, to produce solutionized bulk ODS samples with ~97% theoretical density. This is done using relatively low temperatures and ultra high pressure (UHP) equipment, to compact the mechanically alloyed (MA) steel powder into bulk samples without any thermal phase change influence or oxide precipitation. By having solutionized bulk ODS samples, transmission electron microscopy (TEM) observation of nano oxide precipitation within the steel material can be studied by applying post heat treatments. These types of samples will be very useful to the science and engineering community, to answer questions regarding material powder compacting, oxide synthesis, and performance. Subsequent analysis performed at Queen’s University included X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additional TEM in-situ 1MeV Kr2+ irradiation experiments coupled with energy dispersive X-ray (EDX) techniques, were also performed on large (200nm+) non-stoichiometric oxides embedded within the austenite steel grains, in an attempt to quantify the elemental compositional changes during high temperature (520oC) heavy ion irradiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper is about the simulation of malfunctions in an onshore wind energy conversion system powered by a doubly fed induction generator with a two-level power converter, handling only the slip power. These malfunctions are analysed in order to be able to investigate the impact in the wind power system behaviour by comparison before, during and after the malfunctions. The malfunctions considered in the simulation includes are localized in the DC-link of the converter and in the phase change in rectifier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Road infrastructure is a major contributor of greenhouse gas (GHG) around the world. Once constructed, a road becomes a part of a road network and is subjected to recurrent maintenance/rehabilitation activities. Studies to date are mostly aimed at the development of sustainability indicators that deal with the material and construction phases of a road when it is constructed. The operation phase is infrequently studied and there is a need for sustainability indicators to be developed relating to this phase to better understand the GHG emissions as a proper response to the climate change phenomena. During the operation phase, maintenance/rehabilitation activities are undertaken based on certain agreed intervention criteria that do not include environmental implications relating to the climate change aspect properly. Availability of appropriate indicators may, therefore, assist in sustainable road asset maintenance management. This paper presents the findings of a literature based study and has proposed a way forward to develop a key “road operation phase” environmental indicator, which can contribute to road operation phase carbon footprint management based on a comprehensive road life cycle system boundary model. The proposed indicator can address multiple aspects of high impact road operation life environmental components such as: pavement rolling resistance, albedo, material, traffic congestion and lighting, based on availability of relevant scientific knowledge. Development of the indicator to appropriate level would offset the impacts of these components significantly and contribute to sustainable road operation management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The extension of the superposition principle of the symmetries (P. Curie principle of symmetry) for the case of complete symmetry is given. The enumeration of all crystallographical groups of complete symmetry is presented, the number of elements having complete symmetry for each class of the crystals being indicated. The change of complete symmetry of the crystals under the phase transitions is obtained by superimposing the elements of complete symmetry of polar or axial vectors on the one hand, and the elements of complete symmetry of the crystals on the other. The tables of complete symmetry changes for the cubic, rhombic, monoclinic and triclinic crystals during the ferroelectric and ferromagnetic phase transitions are given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a wireless receiver, a down-converted RF signal undergoes a transient phase shift, when the gain state is changed to adjust for varying conditions in transmission and propagation. A method is developed, in which such phase shifts are detected asynchronously, and their undesirable effects on the bit error rate are corrected. The method was developed for and used in, the system-level characterization and calibration of a 65-nm CMOS UHF receiver. The phase-shifts associated with specific gain-state transitions were measured within a test framework, and used in the baseband signal processing blocks to compensate for errors, whenever the receiver anticipated a gain-state transition.