853 resultados para pavements
Resumo:
The feasibility of substituting fibercomposite (FC) (thermoset) pavement dowels for steel pavement dowels was investigated in this research project. Load transfer capacity, flexural capacity, and material properties were examined. The objectives of Part 1 of this final report included the shear behavior and strength deformations of FC dowel bars without aging. Part 2 will contain the aging effects. This model included the effects of modulus of elasticity for the pavement dowel and concrete, dowel diameter, subgrade stiffness, and concrete compressive strength. An experimental investigation was carried out to establish the modulus of dowel support which is an important parameter for the analysis of dowels. The experimental investigation included measured deflections, observed behavioral characteristics, and failure mode observations. An extensive study was performed on various shear testing procedures. A modified Iosipescu shear method was selected for the test procedure. Also, a special test frame was designed and fabricated for this procedure. The experimental values of modulus of support for shear and FC dowels were used for arriving at the critical stresses and deflections for the theoretical model developed. Different theoretical methods based on analyses suggested by Timoshenko, Friberg, Bradbury, and Westergaard were studied and a comprehensive theoretical model was developed. The fibercomposite dowels were found to provide strengths and behavioral characteristics that appear promising as a potential substitute for steel dowels.
Resumo:
Asphalt binder is typically modified with poly type (styrene-butadiene-styrene or SBS) polymers to improve its rheological properties and performance grade. The elastic and principal component of SBS polymers is butadiene. For the last decade, butadiene prices have fluctuated and significantly increased, leading state highway agencies to search for economically viable alternatives to butadiene based materials. This project reports the recent advances in polymerization techniques that have enabled the synthesis of elastomeric, thermoplastic, block-copolymers (BCPs) comprised of styrene and soybean oil, where the “B” block in SBS polymers is replaced with polymerized triglycerides derived from soybean oil. These new breeds of biopolymers have elastomeric properties comparable to well-established butadiene-based styrenic BCPs. In this report, two types of biopolymer formulations are evaluated for their ability to modify asphalt binder. Laboratory blends of asphalt modified with the biopolymers are tested for their rheological properties and performance grade. Blends of asphalt modified with the biopolymers are compared to blends of asphalt modified with two commonly used commercial polymers. The viscoelastic properties of the blends show that biopolymers improve the performance grade of the asphalt to a similar and even greater extent as the commercial SBS polymers. Results shown in this report indicate there is an excellent potential for the future of these biopolymers as economically and environmentally favorable alternatives to their petrochemically-derived analogs.
Resumo:
Iowa has more than 13,000 miles of portland cement concrete (PCC) pavement. Some pavements have performed well for over 50 years, while others have been removed or overlaid due to the premature deterioration of joints and cracks. Some of the premature deterioration is classical D-cracking, which is attributed to a critically saturated aggregate pore system (freeze-thaw damage). However, some of the premature deterioration is related to adverse chemical reactivity involving carbonate coarse aggregate. The objective of this paper is to demonstrate the value of a chemical analysis of carbonate aggregate using X-ray equipment to identify good or poor quality. At least 1.5% dolomite is necessary in a carbonate aggregate to produce a discernible dolomite peak. The shift of the maximum-intensity X-ray diffraction dolomite d-spacing can be used to predict poor performance of a carbonate aggregate in PCC. A limestone aggregate with a low percentage of strontium (less than 0.013) and phosphorus (less than 0.010) would be expected to give good performance in PCC pavement. Poor performance in PCC pavement is expected from limestone aggregates with higher percentages (above 0.05) of strontium.
Resumo:
A study was made of the detrimental effects of trace amounts of calcium sulfate (occurring naturally in halite deposits used for deicing) on portland cement concrete pavements. It was found that sulfate introduced as gypsum with sodium chloride in deicing brines can have detrimental effects on portland cement mortar. Concentrations of sulfate as low as 0.5% of the solute rendered the brine destructive. Conditions of brine application were critical to specimen durability. The mechanisms of deterioration were found to be due to pore filling resulting from compound formation and deposition. A field evaluation of deteriorating joints suggests that the sulfate phenomena demonstrated in the laboratory also operates in the field. A preliminary evaluation was made of remedies: limits on sulfates, fly ash admixtures, treatment of existing pavement, and salt treatments. This report gives details of the research objectives, experimental design, field testing, and possible solutions. Recommendations for further study are presented.
Resumo:
Highway Research Project HR-392 was undertaken to evaluate cold in-place asphalt recycled (CIR) projects in the State of Iowa. The research involved assessment of performance levels, investigation of factors that most influence pavement performance and economy, and development of guidelines for CIR project selection. The performance was evaluated in two ways: Pavement Condition Indices (PCI, U.S. Corps of Engineers) were calculated and overall ratings were given on ride and appearance. A regression analysis was extrapolated to predict the future service life of CIR roads. The results were that CIR roads within the State of Iowa, with less than 2000 annual average daily traffic (AADT), have an average predicted service life of fifteen to twenty-six years. Subgrade stability problems can prevent a CIR project from being successfully constructed. A series of Dynamic Cone Penetrometer (DCP) tests were conducted on a CIR project that experienced varying levels of subgrade failure during construction. Based on this case study, and supporting data, it was determined that the DCP test can be used to evaluate subgrades that have insufficient stability for recycling. Overall, CIR roads in Iowa are performing well. It appears that the development of transverse cracking has been retarded and little rutting has occurred. Contracting agencies must pay special attention to the subgrade conditions during project selection. Because of its performance, CIR is a recommended method to be considered for rehabilitating aged low volume (<2000 AADT) asphalt concrete roads in Iowa.
Resumo:
This demonstration project consisted of three adjacent highway resurfacing projects using asphalt cement concrete removed from an Interstate highway which had become severely rutted. The salvaged asphaltic concrete was later crushed and hauled to a plant site where it was combined with virgin materials to resurface the three projects. Only two of the projects were used for performance evaluation as the third project was in an interchange area including ramps and was otherwise too short. It was concluded that recycling was cost effective and a high quality surface can be constructed using recycled asphalt cement concrete.
Resumo:
The Iowa Department of Transportation (Iowa DOT) through the Highway Division is responsible for the design, construction and maintenance of roadways that will provide a high level of serviceability to the motorist. First, the motorist expects to be able to get where he wants to go, but now he also demands a minimum level of comfort. In the construction of new roadways, the public is quick to express dissatisfaction with rough pavements. The Highway Division of the Iowa DOT (formerly Iowa State Highway Commission) has a specification which requires a "smooth-riding surface". For over 40 years, new portland cement concrete (pcc) pavement has been checked with a 10-foot rolling straightedge. The contractor is required to grind, saw or mill off all high spots that deviate more than 1/8" from the 10-foot straight line. Unfortunately, there are instances where a roadway that will meet the above criteria does not provide a "smooth-riding surface". The roadway may have monger undulations (swales) that result in an undesirable ride. The objective of this project was to develop a repeatable, reliable time stable, lightweight test unit to measure the riding quality of pcc pavement at normal highway speed the day after construction.
Resumo:
The Iowa demonstration project to promote the rehabilitation of bridge deck concrete by rebonding delaminations with injected epoxy is a 150 ft x 150 ft high truss bridge on Iowa route No. 210 over Indian Creek near Maxwell in Story County (Service level D, AADT-730, Inventory Rating HS-16.9, Operating Rating HS-25). The objective of this study was to evaluate the effectiveness of repairing a delaminated bridge deck by epoxy injection, specifically a bridge deck with a delaminated portland cement concrete overlay. Observations noted during the project lead to the following conclusions: The delaminations rebonded with epoxy have remained solid through five years. The percentage of delamination has stayed essentially the same for both the epoxy injected and non-repaired areas. Epoxy injection appears to be a practical, cost effective alternative to other forms of deck rehabilitation when undertaken at the proper time. Cost effectiveness would reduce dramatically if delayed until breakouts have occurred. On the other hand it would be a slow, labor intensive process if undertaken too early when delaminations are small.
Resumo:
The purpose of this project was to determine the feasibility of using pavement condition data collected for the Iowa Pavement Management Program (IPMP) as input to the Iowa Quadrennial Need Study. The need study, conducted by the Iowa Department of Transportation (Iowa DOT) every four years, currently uses manually collected highway infrastructure condition data (roughness, rutting, cracking, etc.). Because of the Iowa DOT's 10-year data collection cycles, condition data for a given highway segment may be up to 10 years old. In some cases, the need study process has resulted in wide fluctuations in funding allocated to individual Iowa counties from one study to the next. This volatility in funding levels makes it difficult for county engineers to plan and program road maintenance and improvements. One possible remedy is to input more current and less subjective infrastructure condition data. The IPMP was initially developed to satisfy the Intermodal Surface Transportation Efficiency Act (ISTEA) requirement that federal-aid-eligible highways be managed through a pavement management system. Currently all metropolitan planning organizations (MPOs) in Iowa and 15 of Iowa's 18 RPAs participate in the IPMP. The core of this program is a statewide data base of pavement condition and construction history information. The pavement data are collected by machine in two-year cycles. Using pilot areas, researchers examined the implications of using the automated data collected for the IPMP as input to the need study computer program, HWYNEEDS. The results show that using the IPMP automated data in HWYNEEDS is feasible and beneficial, resulting in less volatility in the level of total need between successive quadrennial need studies. In other words, the more current the data, the smaller the shift in total need.
Resumo:
Research is reported which attempted to identify construction procedures that will provide an improved centerline joint on asphalt concrete pavements. Various construction procedures and their evaluation are described. Core densities were made and visual inspections were made 3 years after construction. Center cracking was measured at 4, 5, and 6 years. The only procedure to rank the same when comparing cracking and density (delete the 1:1 slope shoe on the edge) is described. This procedure had the highest average density and also the least cracking through 1985. This method provided the best performance for 4 years after construction and involved the removal of the 1:1 slope shoe from the paver when placing the surface course. This method had 9.0% cracked after 4 years and 100% cracked after 6 years of service.
Resumo:
The use of a thin bonded concrete overlay atop an older surface has been widely incorporated for pavement rehabilitation in Iowa since the early 70's. Two test sections were constructed in 1985 on county road T61 on the Monroe-Wapello County line without the use of grout as a bonding agent to determine if adequate bond could be achieved and structural capacity uncompromised. Both test sections have performed well with one section having higher bond strengths, lower roughness values, higher structural capacity, and less debonding at the joints than the other section. Overall, both ungrouted sections have performed well under substantial truck traffic with minimal surface distress. More attention should be given, however, to rectifying apparent debonding at the joints when no grout is used as a bonding agent.
Resumo:
This document contains a discussion of the reasons why the project did not succeed. A detailed discussion of the steps taken by the Iowa Department of Transportation to make the experiment work are contained in this document, along with recommendations for future projects.
Resumo:
The objective of this research project was to evaluate the construction and service performance of ammonium phosphate/fly ash (APFA) treated base courses of crushed fines and/or unprocessed sand. Specific test results related to construction of the test sections were included in the 1987 construction report by Iowa State University. The performance of the experimental sections is dealt with in this final report. This 1986 project demonstrated that in all cases the control sections utilizing a Type B base experienced dramatically less cracking in the surface than the APFA treated base sections. The cost per mix and subsequent surface maintenance costs for the APFA base sections, especially those having a substantial amount of limestone, were higher than the Type B base control sections. This type of construction may prove to be economical only when petroleum product costs escalate.
Resumo:
In recent years there has been renewed interest in using preventive maintenance techniques to extend pavement life and to ensure low life cycle costs for our road infrastructure network. Thin maintenance surfaces can be an important part of a preventive maintenance program for asphalt cement concrete roads. The Iowa Highway Research Board has sponsored Phase Two of this research project to demonstrate the use of thin maintenance surfaces in Iowa and to develop guidelines for thin maintenance surface uses that are specific to Iowa. This report documents the results of test section construction and monitoring started in Phase One and continued in Phase Two. The report provides a recommended seal coat design process based on the McLeod method and guidance on seal coat aggregates and binders. An update on the use of local aggregates for micro-surfacing in Iowa is included. Winter maintenance guidelines for thin maintenance surfaces are reported herein. Finally, Phase One's interim, qualitative thin maintenance surface guidelines are supplemented with Phase two's revised, quantitative guidelines. When thin maintenance surfaces are properly selected and applied, they can improve the pavement surface condition index and the skid resistance of pavements. For success to occur, several requirements must be met, including proper material selection, design, application rate, workmanship, and material compatibility, as well as favorable weather during application and curing. Specific guidance and recommendations for many types of thin maintenance surfaces and conditions are included in the report.
Resumo:
Extensive programmed laboratory tests involving some 400 asphalt emulsion slurry seals (AESS) were conducted. Thirteen aggregates including nine Iowa sources, a quartzite, a synthetic aggregate (Haydite), a limestone stone from Nebraska, and a Chat aggregate from Kansas were tested in combination with four emulsions and two mineral fillers, resulting in a total of 40 material combinations. A number of meetings were held with the Iowa DOT engineers and 12 state highway departments that have had successful slurry seal experiences and records, and several slurry seal contractors and material and equipment suppliers were contacted. Asphalt emulsion slurry seal development, uses, characteristics, tests, and design methods were thoroughly reviewed in conjunction with Iowa's experiences through these meetings and discussions and through a literature search (covering some 140 articles and 12 state highway department specifications). It was found that, while asphalt emulsion slurry seals (when properly designed and constructed) can economically improve the quality and extend the life of existing pavement surface, experiences with them had been mixed due to the many material, slurry, and construction variables that affect their design, construction, and performance. The report discusses those variables identified during the course of the project and makes recommendations concerning design procedures, design criteria, specifications and the means of evaluating them.