954 resultados para nuclear potential energy surface
Resumo:
Many experimental observations have shown that a single domain in a ferroelectric material switches by progressive movement of domain walls, driven by a combination of electric field and stress. The mechanism of the domain switch involves the following steps: initially, the domain has a uniform spontaneous polarization; new domains with the reverse polarization direction nucleate, mainly at the surface, and grow though the crystal thickness; the new domain expands sideways as a new domain continues to form; finally, the domain switch coalesces to complete the polarization reversal. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of the ferroelectric material and used to study the nonlinear constitutive behavior of a ferroelectric body in this paper. The principle of stationary total potential energy is put forward in which the basic unknown quantities are the displacement u(i), electric displacement D-i and volume fraction rho(I) of the domain switching for the variant I. The mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total potential energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion established by Hwang et al. [ 1]. Based on the domain switching criterion, a set of linear algebraic equations for determining the volume fraction rho(I) of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. If the volume fraction rho(I) of domain switching for each domain is prescribed, the unknown displacement and electric potential can be obtained based on the conventional finite element procedure. It is assumed that a domain switches if the reduction in potential energy exceeds a critical energy barrier. According to the experimental results, the energy barrier will strengthen when the volume fraction of the domain switching increases. The external mechanical and electric loads are increased step by step. The volume fraction rho(I) of domain switching for each element obtained from the last loading step is used as input to the constitutive equations. Then the strain and electric fields are calculated based on the conventional finite element procedure. The finite element analysis is carried out on the specimens subjected to uniaxial coupling stress and electric field. Numerical results and available experimental data are compared and discussed. The present theoretic prediction agrees reasonably with the experimental results.
Resumo:
The relative sputtering yield induced by highly charged Arq+ impacting on Nb surface is investigated. The yield increases drastically as the incidence angle increases. A formula Y=A* tan(B) (theta) + C, developed from classical sputtering theory, fits well with the yield. By analysing a series of coefficients A and C extracted by curve fitting, the results demonstrate the presence of a synergy of the linear cascade collision and potential energy deposition.
Resumo:
T he total secondary electron emission yields, gamma(T), induced by impact of the fast ions Neq+ (q = 2-8) and Arq+ (q = 3-12) on Si and Neq+ (q = 2-8) on W targets have been measured. It was observed that for a given impact energy, gamma(T) increases with the charge of projectile ion. By plotting gamma(T) as a function of the total potential energy of the respective ion, true kinetic and potential electron yields have been obtained. Potential electron yield was proportional to the total potential energy of the projectile ion. However, decrease in potential electron yield with increasing kinetic energy of Neq+ impact on Si and W was observed. This decrease in potential electron yield with kinetic energy of the ion was more pronounced for the projectile ions having higher charge states. Moreover, kinetic electron yield to energy-loss ratio for various ion-target combinations was calculated and results were in good agreement with semi-empirical model for kinetic electron emission.
Resumo:
Using the slow highly charged ions Xe-129(q+) (q = 25, 26, 27; initial kinetic T-0 <= 4.65 keV/a.u.) to impact Au surface, the Au atomic M alpha characteristic X-ray spectrum is induced. The result shows that as long as the charge state of projectile is high enough, the heavy atomic characteristic X-ray can be effectively excited even though the incident beam is very weak (nA magnitude), and the X-ray yield per ion is in the order of 10(-8) and increases with the kinetic energy and potential energy of projectile. By measuring the Au M alpha-X-ray spectra, Au atomic N-level lifetime is estimated at about 1.33x10(-18) s based on Heisenberg uncertainty relation.
Resumo:
The electron emission yield of the interaction of highly charged argon ions with silicon surface is reported. The experiment was done at the Atomic Physics Research Platform on the Electron Cyclotron Resonance (ECR) Ion Source of the National Laboratory HIRFL (Heavy Ion Research Facility in Lanzhou). In the experiment, the potential energy and kinetic energy was selected by varying the projectile charge states and extracting voltage, thus the contributions of the projectile potential energy deposition and electronic energy loss in the solid are extensively investigated. The results show that, the two main factors leading to surface electron emission, namely the potential energy deposition and the electronic energy loss, are both approximately proportional to the electron emission yield per ion.
Resumo:
In this work a study of damage production in gallium nitride via elastic collision process (nuclear energy deposition) and inelastic collision process (electronic energy deposition) using various heavy ions is presented. Ordinary low-energy heavy ions (Fe+ and Mo+ ions of 110 keV), swift heavy ions (Pb-208(27+) ions of 1.1 MeV/u) and slow highly-charged heavy ions (Xen+ ions of 180 keV) were employed in the irradiation. Damage accumulation in the GaN crystal films as a function of ion fluence and temperature was studied with RBS-channeling technique, Raman scattering technique, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For ordinary low-energy heavy ion irradiation, the temperature dependence of damage production is moderate up to about 413 K resulting in amorphization of the damaged layer. Enhanced dynamic annealing of defects dominates at higher temperatures. Correlation of amorphization with material decomposition and nitrogen bubble formation was found. In the irradiation of swift heavy ions, rapid damage accumulation and efficient erosion of the irradiated layer occur at a rather low value of electronic energy deposition (about 1.3 keV/nm(3)),. which also varies with irradiation temperature. In the irradiation of slow highly-charged heavy ions (SHCI), enhanced amorphization and surface erosion due to potential energy deposition of SHCI was found. It is indicated that damage production in GaN is remarkably more sensitive to electronic energy loss via excitation and ionization than to nuclear energy loss via elastic collisions.
Resumo:
In the framework of the finite temperature Brueckner-Hartree-Fock approach including the contribution of the microscopic three-body force, the single nuclear potential and the nucleon effective mass in hot nuclear matter at various temperatures and densities have been calculated by using the hole-line expansion for mass operator, and the effects of the three-body forces and the ground state correlations on the single nucleon potential have been investigated. It is shown that both the ground state correlations and the three-body force affect considerably the density and temperature dependence of the single nucleon potential. The rearrangement correction in the single nucleon potential is repulsive and it reduces remarkably the attraction of the single nucleon potential in the low-momentum region. The rearrangement contribution due to the ground state correlations becomes smaller as the temperature rises up and becomes larger as the density increases. The effect of the three-body force on the ground state correlations is to reduce the contribution of rearrangement. At high densities, the single nucleon potential containing both the rearrangement correction and the contribution of the three-body force becomes more repulsive as the temperature increases.
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, the emission of pion in heavy-ion collisions in the region 1 A GeV as a probe of nuclear symmetry energy at supra-saturation densities is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The total pion multiplicities and the pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6. Ska and SIB, and also for the cases of different stiffness of symmetry energy with the parameter SLy6. Preliminary results compared with the measured data by the FOPI Collaboration favor a hard symmetry energy of the potential term proportional to (rho/rho(0))(gamma s) with gamma(s) = 2. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
We studied the characteristic X-ray spectra produced by the interaction of highly charged ions of X-129(q+) (q =25, 26, 27) with surface of metallic Mo. The experimental result shows that highly charged ions can excite the characteristic X-ray spectra of L-shell of Mo when the beam' s intensity is not more than 120 nA. The X-ray yield of single ion reaches a quantitative level of 10(-8) and increases with the increment of the ion' s kinetic energy and ionic charge (potential energy). By measuring the X-ray spectra of Mo-L alpha(1) the M-level lifetime of Mo atom is estimated by using Heisenberg uncertainty relation.
PROBING THE SYMMETRY ENERGY AT SUPRA-SATURATION DENSITIES FROM PION EMISSION IN HEAVY-ION COLLISIONS
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, the emission of pion in heavy-ion collisions in the region 1 A GeV as a probe of nuclear symmetry energy at supra-saturation densities is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6, Ska and SIII, and also for the cases of different stiffness of symmetry energy with the parameter SLy6. Preliminary results compared with the measured data by the FOPI collaboration favor a hard symmetry energy of the potential term proportional to (rho/rho(0))(gamma s) with gamma(s) = 2.
Resumo:
In situ electrochemical scanning tunneling microscopy, alternating current voltammetry, and electrochemical quartz crystal microbalance have been employed to follow the potential-dependent adsorption/desorption processes of nucleic acid bases on highly oriented pyrolytic graphite (HOPG) electrode. The results show that (i) potential-dependent adsorption/desorption of nucleic acid bases on HOPG electrode was accompanied by delamination of the HOPG surface, and the delamination initiates from steps or kinks on the electrode surface, which provide highly active sites for adsorption; (ii) the delamination usually occurred when the electrode potential was changed or when the electrode was at potentials where the phase transition of adsorbate occurred. These results suggest that the surface stress resulting from the interaction between the substrate and adsorbate, as well as the interaction due to potential-induced surface charge distribution and the hysteresis of charge equilibrium are the main factors resulting in HOPG delamination. (C) 1999 The Electrochemical Society. S0013-4651(97)12-013-4. All rights reserved.
Resumo:
There is a need to obtain the hydrologic data including ocean current, wave, temperature and so on in the South China Sea. A new profiling instrument which does not suffer from the damage due to nature forces or incidents caused by passing ships, is under development to acquire data from this area. This device is based on a taut single point mid-water mooring system. It incorporates a small, instrumented vertically profiling float attached via an electromechanical cable to a winch integral with the main subsurface flotation. On a pre-set schedule, the instrument float with sensors is winched up to the surface if there is no strip passing by, which is defined by an on-board miniature sonar. And it can be immediately winched down to a certain depth if the sonar sensor finds something is coming. Since, because Of logistics, the area can only be visited once for a long time and a minimum of 10 times per day profiles are desired, energy demands are severe. To respond to these concerns, the system has been designed to conserve a substantial portion of the potential energy lost during the ascent phase of each profile and subsequently use this energy to pull the instrument down. Compared with the previous single-point layered measuring mode, it is advanced and economical. At last the paper introduces the test in the South China Sea.
Resumo:
When highly charged ions are incident on a surface, part of their potential energy is emitted as characteristic radiation. The energies and yields of these characteristic x rays have been measured for a series of elements at the Tokyo electron-beam ion trap. These data have been used to develop a simple model of the relaxation of the hollow atoms which are formed as the ion approaches the surface, as well as a set of semiempirical scaling laws, which allow for the ready calculation of the K-shell x-ray spectrum which would be produced by an arbitrary slow bare or hydrogenlike ion on a surface. These semiempirical scaling laws can be used to assess the merit of highly charged ion fluorescence x-ray generation in a wide range of applications.
Resumo:
The idea of proxying network connectivity has been proposed as an efficient mechanism to maintain network presence on behalf of idle devices, so that they can “sleep”. The concept has been around for many years; alternative architectural solutions have been proposed to implement it, which lead to different considerations about capability, effectiveness and energy efficiency. However, there is neither a clear understanding of the potential for energy saving nor a detailed performance comparison among the different proxy architectures. In this paper, we estimate the potential energy saving achievable by different architectural solutions for proxying network connectivity. Our work considers the trade-off between the saving achievable by putting idle devices to sleep and the additional power consumption to run the proxy. Our analysis encompasses a broad range of alternatives, taking into consideration both implementations already available in the market and prototypes built for research purposes. We remark that the main value of our work is the estimation under realistic conditions, taking into consideration power measurements, usage profiles and proxying capabilities.
Resumo:
Senior thesis for Oceanography 445