947 resultados para nonlinear system characterisation
Resumo:
The safe and responsible development of engineered nanomaterials (ENM), nanotechnology-based materials and products, together with the definition of regulatory measures and implementation of "nano"-legislation in Europe require a widely supported scientific basis and sufficient high quality data upon which to base decisions. At the very core of such a scientific basis is a general agreement on key issues related to risk assessment of ENMs which encompass the key parameters to characterise ENMs, appropriate methods of analysis and best approach to express the effect of ENMs in widely accepted dose response toxicity tests. The following major conclusions were drawn: Due to high batch variability of ENMs characteristics of commercially available and to a lesser degree laboratory made ENMs it is not possible to make general statements regarding the toxicity resulting from exposure to ENMs. 1) Concomitant with using the OECD priority list of ENMs, other criteria for selection of ENMs like relevance for mechanistic (scientific) studies or risk assessment-based studies, widespread availability (and thus high expected volumes of use) or consumer concern (route of consumer exposure depending on application) could be helpful. The OECD priority list is focussing on validity of OECD tests. Therefore source material will be first in scope for testing. However for risk assessment it is much more relevant to have toxicity data from material as present in products/matrices to which men and environment are be exposed. 2) For most, if not all characteristics of ENMs, standardized methods analytical methods, though not necessarily validated, are available. Generally these methods are only able to determine one single characteristic and some of them can be rather expensive. Practically, it is currently not feasible to fully characterise ENMs. Many techniques that are available to measure the same nanomaterial characteristic produce contrasting results (e.g. reported sizes of ENMs). It was recommended that at least two complementary techniques should be employed to determine a metric of ENMs. The first great challenge is to prioritise metrics which are relevant in the assessment of biological dose response relations and to develop analytical methods for characterising ENMs in biological matrices. It was generally agreed that one metric is not sufficient to describe fully ENMs. 3) Characterisation of ENMs in biological matrices starts with sample preparation. It was concluded that there currently is no standard approach/protocol for sample preparation to control agglomeration/aggregation and (re)dispersion. It was recommended harmonization should be initiated and that exchange of protocols should take place. The precise methods used to disperse ENMs should be specifically, yet succinctly described within the experimental section of a publication. 4) ENMs need to be characterised in the matrix as it is presented to the test system (in vitro/ in vivo). 5) Alternative approaches (e.g. biological or in silico systems) for the characterisation of ENMS are simply not possible with the current knowledge. Contributors: Iseult Lynch, Hans Marvin, Kenneth Dawson, Markus Berges, Diane Braguer, Hugh J. Byrne, Alan Casey, Gordon Chambers, Martin Clift, Giuliano Elia1, Teresa F. Fernandes, Lise Fjellsbø, Peter Hatto, Lucienne Juillerat, Christoph Klein, Wolfgang Kreyling, Carmen Nickel1, and Vicki Stone.
Resumo:
Post-stroke objective or subjective fatigue occurs in around 50% of patients and is frequent (30%) even after minor strokes. It can last more than one year after the event, and is characterised by a different quality from usual fatigue and good response to rest. Associated risk factors include age, single patients, female, disability, depression, attentional impairment and sometimes posterior strokes, but also inactivity, overweight, alcohol and sleep apnoea syndrome. There are few therapy studies, but treatment may include low-intensity training, cognitive therapy, treatment of associated depression, wakefulness-promoting agents like modafinil, correction of risk factors and adaptation of activities.
Resumo:
Rockfall is an extremely rapid process involving long travel distances. Due to these features, when an event occurs, the ability to take evasive action is practically zero and, thus, the risk of injury or loss of life is high. Damage to buildings and infrastructure is quite likely. In many cases, therefore, suitable protection measures are necessary. This contribution provides an overview of previous and current research on the main topics related to rockfall. It covers the onset of rockfall and runout modelling approaches, as well as hazard zoning and protection measures. It is the aim of this article to provide an in-depth knowledge base for researchers and practitioners involved in projects dealing with the rockfall protection of infrastructures, who may work in the fields of civil or environmental engineering, risk and safety, the earth and natural sciences.
Resumo:
Although sources in general nonlinear mixturm arc not separable iising only statistical independence, a special and realistic case of nonlinear mixtnres, the post nonlinear (PNL) mixture is separable choosing a suited separating system. Then, a natural approach is based on the estimation of tho separating Bystem parameters by minimizing an indcpendence criterion, like estimated mwce mutual information. This class of methods requires higher (than 2) order statistics, and cannot separate Gaarsian sources. However, use of [weak) prior, like source temporal correlation or nonstationarity, leads to other source separation Jgw rithms, which are able to separate Gaussian sourra, and can even, for a few of them, works with second-order statistics. Recently, modeling time correlated s011rces by Markov models, we propose vcry efficient algorithms hmed on minimization of the conditional mutual information. Currently, using the prior of temporally correlated sources, we investigate the fesihility of inverting PNL mixtures with non-bijectiw non-liacarities, like quadratic functions. In this paper, we review the main ICA and BSS results for riunlinear mixtures, present PNL models and algorithms, and finish with advanced resutts using temporally correlated snu~sm
Resumo:
SUMMARY Regulation of sodium excretion by the kidney is a key mechanism in the long term regulation of blood pressure, and when altered it constitutes a risk factor for the appearance of arterial hypertension. Aldosterone, which secretion depends upon salt intake in the diet, is a steroid hormone that regulates sodium reabsorption in the distal part of the nephron (functional unit of the kidney) by modulating gene transcription. It has been shown that it can act synergistically with the peptidic hormone insulin through the interaction of their signalisation pathways. Our work consisted of two distinct parts: 1) the in vitro and in vivo characterisation of Glucocorticoid-Induced Leucine Zipper (GILZ) (an aldosterone-induced gene) mechanism of action; 2) the in vitro characterisation of insulin mechanism of action and its interaction with aldosterone. GILZ mRNA, coded by the TSC22D3 gene, is strongly induced by aldosterone in the cell line of principal cells of the cortical collecting duct (CCD) mpkCCDc14, suggesting that GILZ is a mediator of aldosterone response. Co-expression of GILZ and the amiloride-sensitive epithelial sodium channel ENaC in vitro in the Xenopus oocyte expression system showed that GILZ has no direct effect on the ENaC-mediated Na+ current in basal conditions. To define the role of GILZ in the kidney and in other organs (colon, heart, skin, etc.), a conditional knock-out mouse is being produced and will allow the in vivo study of its role. Previous data showed that insulin induced a transepithelial sodium transport at supraphysiological concentrations. Insulin and the insulin-like growth factor 1 (IGF-1) are able to bind to each other receptor with an affinity 50 to 100 times lower than to their cognate receptor. Our starting hypothesis was that the insulin effect observed at these supraphysiological concentrations is actually mediated by the IGF receptor type 1 (IGF-1R). In a new cell line that presents all the characteristics of the principal cells of the CCD (mCCDc11) we have shown that both insulin and IGF-1 induce a physiologically significant increase of Na+ transport through the activation of IGF-1R. Aldosterone and insulin/IGF-1 have an additive effect on Na+ transport, through the activation of the PI3-kinase (PI3-K) pathway and the phosphorylation of the serum- and glucocorticoid-induced kinase 1 (Sgk1) by the IGF-1R, and the induction of Sgk1 expression by aldosterone. Thus, Sgk1 integrates IGF-1/insulin and aldosterone effects. We suggest that IGF-1 is physiologically relevant in the modulation of sodium balance, while insulin can only regulate Na+ transport at supraphysiological conditions. Both hormones would bind to the IGF-1R and induce Na+ transport by activating the PI3-K PDK1/2 - Sgk1 pathway. We have shown for the first time that Sgk1 is expressed and phosphorylated in principal cells of the CCD in basal conditions, although the mechanism that maintains Sgk1 phosphorylation is not known. This new role for IGF-1 suggests that it could be a salt susceptibility gene. In effect, IGF-1 stimulates Na+ and water transport in the kidney in vivo. Moreover, 35 % of the acromegalic patients (overproduction of growth hormone and IGF-1) are hypertensives (higher proportion than in normal population), and genetic analysis suggest a link between the IGF-1 gene locus and blood pressure. RÉSUMÉ La régulation de l'excrétion rénale de sodium (Na+) joue un rôle principal dans le contrôle à long terme de la pression sanguine, et ses altérations constituent un facteur de risque de l'apparition d'une hypertension artérielle. L'aldosterone, dont la sécrétion dépend de l'apport en sel dans la diète, est une hormone stéroïdienne qui régule la réabsorption de Na+ dans la partie distale du nephron (unité fonctionnelle du rein) en contrôlant la transcription de gènes. Elle peut agir de façon synergistique avec l'hormone peptidique insuline, probablement via l'interaction de leurs voies de signalisation cellulaire. Le but de notre travail comportait deux volets: 1) caractériser in vitro et in vivo le mécanisme d'action du Glucocorticoid Induced Leucine Zipper (GILZ) (un gène induit par l'aldosterone); 2) caractériser in vitro le mécanisme d'action de l'insuline et son interaction avec l'aldosterone. L'ARNm de GILZ, codé par le gène TSC22D3, est induit par l'aldosterone dans la lignée cellulaire de cellules principales du tubule collecteur cortical (CCD) mpkCCDc14, suggérant que GILZ est un médiateur potentiel de la réponse à l'aldosterone. La co-expression in vitro de GILZ et du canal à Na+ sensible à l'amiloride ENaC dans le système d'expression de l'oocyte de Xénope a montré que GILZ n'a pas d'effet sur les courants sodiques véhiculées par ENaC en conditions basales. Une souris knock-out conditionnelle de GILZ est en train d'être produite et permettra l'étude in vivo de son rôle dans le rein et d'autres organes. Des expériences préliminaires ont montré que l'insuline induit un transport transépithelial de Na+ à des concentrations supraphysiologiques. L'insuline et l'insulin-like growth factor 1 (IGF-1) peuvent se lier à leurs récepteurs réciproques avec une affinité 50 à 100 fois moindre qu'à leur propre récepteur. Nous avons donc proposé que l'effet de l'insuline soit médié par le récepteur à l'IGF type 1 (IGF-1R). Dans une nouvelle lignée cellulaire qui présente toutes les caractéristiques des cellules principales du CCD (mCCDc11) nous avons montré que les deux hormones induisent une augmentation physiologiquement significative du transport du Na+ par l'activation des IGF-1 R. Aldosterone et insuline/IGF-1 ont un effet additif sur le transport de Na+, via l'activation de la voie de la PI3-kinase et la phosphorylation de la serum- and glucocorticoid-induced kinase 1 (Sgk1) par l'IGF-1R, dont l'expression est induite par l'aldosterone. Sgk1 intègre les effets de l'insuline et l'aldosterone. Nous proposons que l'IGF-1 joue un rôle dans la modulation physiologique de la balance sodique, tandis que l'insuline régule le transport de Na+ à des concentrations supraphysiologiques. Les deux hormones agissent en se liant à l'IGF-1R et induisent le transport de Na+ en activant la cascade de signalisation PI3-K - PDK1/2 - Sgk1. Nous avons montré pour la première fois que Sgk1 est exprimée et phosphorylée dans des conditions basales dans les cellules principales du CCD, mais le mécanisme qui maintient sa phosphorylation n'est pas connu. Ce nouveau rôle pour l'IGF-1 suggère qu'il pourrait être un gène impliqué de susceptibilité au sel. Aussi, l'IGF-1 stimule le transport rénal de Na+ in vivo. De plus, 35 % des patients atteints d'acromégalie (surproduction d'hormone de croissance et d'IGF-1) sont hypertensifs (prévalence plus élevée que la population normale), et des analyses génétiques suggèrent un lien entre le locus du gène de l'IGF-1 et la pression sanguine. RÉSUMÉ GRAND PUBLIC Nos ancêtres se sont génétiquement adaptés pendant des centaines de millénaires à un environnement pauvre en sel (chlorure de sodium) dans la savane équatoriale, où ils consommaient moins de 0,1 gramme de sel par jour. On a commencé à ajouter du sel aux aliments avec l'apparition de l'agriculture (il y a 5000 à 10000 années), et aujourd'hui une diète omnivore, qui inclut des plats préparés, contient plusieurs fois la quantité de sodium nécessaire pour notre fonction physiologique normale (environ 10 grammes par jour). Le corps garde sa concentration constante dans le sang en s'adaptant à une consommation très variable de sel. Pour ceci, il module son excrétion soit directement, soit en sécrétant des hormones régulatrices. Le rein joue un rôle principal dans cette régulation puisque l'excrétion urinaire de sel change selon la diète et peut aller d'une quantité dérisoire à plus de 36 grammes par jour. L'attention qu'on prête au sel est liée à sa relation avec l'hypertension essentielle. Ainsi, le contrôle rénal de l'excrétion de sodium et d'eau est le principal mécanisme dans la régulation de la pression sanguine, et une ingestion excessive de sel pourrait être l'un des facteurs-clé déclenchant l'apparition d'un phénotype hypertensif. L'hormone aldosterone diminue l'excrétion de sodium par le rein en modulant l'expression de gènes qui pourraient être impliqués dans la sensibilité au sel. Dans une lignée cellulaire de rein l'expression du gène TSC22D3, qui se traduit en la protéine Glucocorticoid Induced Leucine Zipper (GILZ), est fortement induite par l'aldosterone. Ceci suggère que GILZ est un médiateur potentiel de l'effet de l'aldosterone, et pourrait être impliqué dans la sensibilité au sel. Pour analyser la fonction de GILZ dans le rein plusieurs approches ont été utilisées. Par exemple, une souris dans laquelle GILZ est spécifiquement inactivé dans le rein est en train d'être produite et permettra l'étude du rôle de GILZ dans l'organisme. De plus, on a montré que GILZ, en conditions basales, n'a pas d'effet direct sur la protéine transportant le sodium à travers la membrane des cellules, le canal sodique épithélial ENaC. On a aussi essayé de trouver des protéines qui interagissent directement avec GILZ utilisant une technique appelée du « double-hybride dans la levure », mais aucun candidat n'a émergé. Des études ont montré que, à de hautes concentrations, l'insuline peut aussi diminuer l'excrétion de sodium. A ces concentrations, elle peut activer son récepteur spécifique, mais aussi le récepteur d'une autre hormone, l'Insulin-Like Growth Factor 1 (IGF-1). En plus, l'infusion d'IGF-1 augmente la rétention rénale de sodium et d'eau, et des mutations du gène codant pour l'IGF-1 sont liées aux différents niveaux de pression sanguine. On a utilisé une nouvelle lignée cellulaire de rein développée dans notre laboratoire, appelée mCCDc11, pour analyser l'importance relative des deux hormones dans l'induction du transport de sodium. On a montré que les deux hormones induisent une augmentation significative du transport de sodium par l'activation de récepteurs à l'IGF-1 et non du récepteur à l'insuline. On a montré qu'à l'intérieur de la cellule leur activation induit une augmentation du transport sodique par le biais du canal ENaC en modifiant la quantité de phosphates fixés sur la protéine Serumand Glucocorticoid-induced Kinase 1 (Sgk1). On a finalement montré que l'IGF-1 et l'aldosterone ont un effet additif sur le transport de sodium en agissant toutes les deux sur Sgk1, qui intègre leurs effets dans le contrôle du transport de sodium dans le rein.
Resumo:
Control of a chaotic system by homogeneous nonlinear driving, when a conditional Lyapunov exponent is zero, may give rise to special and interesting synchronizationlike behaviors in which the response evolves in perfect correlation with the drive. Among them, there are the amplification of the drive attractor and the shift of it to a different region of phase space. In this paper, these synchronizationlike behaviors are discussed, and demonstrated by computer simulation of the Lorentz model [E. N. Lorenz, J. Atmos. Sci. 20 130 (1963)] and the double scroll [T. Matsumoto, L. O. Chua, and M. Komuro, IEEE Trans. CAS CAS-32, 798 (1985)].
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
A Wiener system is a linear time-invariant filter, followed by an invertible nonlinear distortion. Assuming that the input signal is an independent and identically distributed (iid) sequence, we propose an algorithm for estimating the input signal only by observing the output of the Wiener system. The algorithm is based on minimizing the mutual information of the output samples, by means of a steepest descent gradient approach.
Resumo:
This paper proposes a very simple method for increasing the algorithm speed for separating sources from PNL mixtures or invertingWiener systems. The method is based on a pertinent initialization of the inverse system, whose computational cost is very low. The nonlinear part is roughly approximated by pushing the observations to be Gaussian; this method provides a surprisingly good approximation even when the basic assumption is not fully satisfied. The linear part is initialized so that outputs are decorrelated. Experiments shows the impressive speed improvement.
Resumo:
We describe the preparation and some optical properties of high refractive index TeO2-PbO-TiO2 glass system. Highly homogeneous glasses were obtained by agitating the mixture during the melting process in an alumina crucible. The characterization was done by X-ray diffraction, Raman scattering, light absorption and linear refractive index measurements. The results show a change in the glass structure as the PbO content increases: the TeO4 trigonal bipyramids characteristics of TeO2 glasses transform into TeO3 trigonal pyramids. However, the measured refractive indices are almost independent of the glass composition. We show that third-order nonlinear optical susceptibilities calculated from the measured refractive indices using Lines' theoretical model are also independent of the glass composition.
Resumo:
Streaming potential measurements for the surface charge characterisation of different filter media types and materials were used. The equipment was developed further so that measurements could be taken along the surfaces, and so that tubular membranes could also be measured. The streaming potential proved to be a very useful tool in the charge analysis of both clean and fouled filter media. Adsorption and fouling could be studied, as could flux, as functions of time. A module to determine the membrane potential was also constructed. The results collected from the experiments conducted with these devices were used in the study of the theory of streaming potential as an electrokinetic phenomenon. Several correction factors, which are derived to take into account the surface conductance and the electrokinetic flow in very narrow capillaries, were tested in practice. The surface materials were studied using FTIR and the results compared with those from the streaming potentials. FTIR analysis was also found to be a useful tool in the characterisation of filters, as well as in the fouling studies. Upon examination of the recorded spectra from different depths in a sample it was possible to determine the adsorption sites. The influence of an external electric field on the cross flow microflltration of a binary protein system was investigated using a membrane electroflltration apparatus. The results showed that a significant improvement could be achieved in membrane filtration by using the measured electrochemical properties to help adjust the process conditions.
Resumo:
In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others
Resumo:
We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features
Resumo:
Dirt counting and dirt particle characterisation of pulp samples is an important part of quality control in pulp and paper production. The need for an automatic image analysis system to consider dirt particle characterisation in various pulp samples is also very critical. However, existent image analysis systems utilise a single threshold to segment the dirt particles in different pulp samples. This limits their precision. Based on evidence, designing an automatic image analysis system that could overcome this deficiency is very useful. In this study, the developed Niblack thresholding method is proposed. The method defines the threshold based on the number of segmented particles. In addition, the Kittler thresholding is utilised. Both of these thresholding methods can determine the dirt count of the different pulp samples accurately as compared to visual inspection and the Digital Optical Measuring and Analysis System (DOMAS). In addition, the minimum resolution needed for acquiring a scanner image is defined. By considering the variation in dirt particle features, the curl shows acceptable difference to discriminate the bark and the fibre bundles in different pulp samples. Three classifiers, called k-Nearest Neighbour, Linear Discriminant Analysis and Multi-layer Perceptron are utilised to categorize the dirt particles. Linear Discriminant Analysis and Multi-layer Perceptron are the most accurate in classifying the segmented dirt particles by the Kittler thresholding with morphological processing. The result shows that the dirt particles are successfully categorized for bark and for fibre bundles.
Resumo:
This study aims at detailing bimodal pore distribution by means of water retention curve in an oxidic-gibbsitic Latosol and in a kaolinitic cambisol Latossol under conservation management system of coffee crop. Samples were collected at depths of 20; 40; 80; 120 and 160 cm on coffee trees rows and between rows under oxidic-gibbsitic Latosol (LVd) and kaolinitic cambisol Latossol (LVAd). Water retention curve was determined at matrix potentials (Ψm) -1; -2; -4; -6; -10 kPa obtained from the suction unit; the Ψm of -33; -100; -500; -1,500 kPa were obtained by the Richards extractor, and WP4-T psychrometer was used to determine Ψm -1,500 to -300,000 kPa. The water retention data were adjusted to the double van Genuchten model by nonlinear model procedures of the R 2.12.1 software. Was estimated the model parameter and inflection point slope. The system promoted changes in soil structure and water retention for the conditions evaluated, and both showed bimodal pores distribution, which were stronger in LVd. There was a strong influence of mineralogy gibbsitic in the water retention more negative than Ψm -1500 kPa, reflected in the values of the residual water content.