936 resultados para mobile robots
Resumo:
In this work, we propose methodologies and computer tools to insert robots in cultural environments. The basic idea is to have a robot in a real context (a cultural space) that can represent an user connected to the system through Internet (visitor avatar in the real space) and that the robot also have its representation in a Mixed Reality space (robot avatar in the virtual space). In this way, robot and avatar are not simply real and virtual objects. They play a more important role in the scenery, interfering in the process and taking decisions. In order to have this service running, we developed a module composed by a robot, communication tools and ways to provide integration of these with the virtual environment. As welI we implemented a set of behaviors with the purpose of controlling the robot in the real space. We studied available software and hardware tools for the robotics platform used in the experiments, as welI we developed test routines to determine their potentialities. Finally, we studied the behavior-based control model, we planned and implemented alI the necessary behaviors for the robot integration to the real and virtual cultural spaces. Several experiments were conducted, in order to validate the developed methodologies and tools
Resumo:
Several mobile robots show non-linear behavior, mainly due friction phenomena between the mechanical parts of the robot or between the robot and the ground. Linear models are efficient in some cases, but it is necessary take the robot non-linearity in consideration when precise displacement and positioning are desired. In this work a parametric model identification procedure for a mobile robot with differential drive that considers the dead-zone in the robot actuators is proposed. The method consists in dividing the system into Hammerstein systems and then uses the key-term separation principle to present the input-output relations which shows the parameters from both linear and non-linear blocks. The parameters are then simultaneously estimated through a recursive least squares algorithm. The results shows that is possible to identify the dead-zone thresholds together with the linear parameters
Resumo:
Several methods of mobile robot navigation request the mensuration of robot position and orientation in its workspace. In the wheeled mobile robot case, techniques based on odometry allow to determine the robot localization by the integration of incremental displacements of its wheels. However, this technique is subject to errors that accumulate with the distance traveled by the robot, making unfeasible its exclusive use. Other methods are based on the detection of natural or artificial landmarks present in the environment and whose location is known. This technique doesnt generate cumulative errors, but it can request a larger processing time than the methods based on odometry. Thus, many methods make use of both techniques, in such a way that the odometry errors are periodically corrected through mensurations obtained from landmarks. Accordding to this approach, this work proposes a hybrid localization system for wheeled mobile robots in indoor environments based on odometry and natural landmarks. The landmarks are straight lines de.ned by the junctions in environments floor, forming a bi-dimensional grid. The landmark detection from digital images is perfomed through the Hough transform. Heuristics are associated with that transform to allow its application in real time. To reduce the search time of landmarks, we propose to map odometry errors in an area of the captured image that possesses high probability of containing the sought mark
Resumo:
This work addresses the dynamic control problem of two-wheeled differentially driven non-holonomic mobile robot. Strategies for robot positioning control and robot orientating control are presented. Such strategies just require information about the robot con¯guration (x, y and teta), which can be collected by an absolute positioning system. The strategies development is related to a change on the controlled variables for such systems, from x, y and teta to s (denoting the robot linear displacement) and teta, and makes use of the polar coordinates representation for the robot kinematic model. Thus, it is possible to obtain a linear representation for the mobile robot dynamic model and to develop such strategies. It is also presented that such strategies allow the use of linear controllers to solve the control problem. It is shown that there is flexibility to choice the linear controller (P, PI, PID, Model Matching techniques, others) to be implemented. This work presents an introduction to mobile robotics and their characteristics followed by the control strategies development and controllers design. Finally, simulated and experimental results are presented and commented
Resumo:
The main task and one of the major mobile robotics problems is its navigation process. Conceptualy, this process means drive the robot from an initial position and orientation to a goal position and orientation, along an admissible path respecting the temporal and velocity constraints. This task must be accomplished by some subtasks like robot localization in the workspace, admissible path planning, trajectory generation and motion control. Moreover, autonomous wheeled mobile robots have kinematics constraints, also called nonholonomic constraints, that impose the robot can not move everywhere freely in its workspace, reducing the number of feasible paths between two distinct positions. This work mainly approaches the path planning and trajectory generation problems applied to wheeled mobile robots acting on a robot soccer environment. The major dificulty in this process is to find a smooth function that respects the imposed robot kinematic constraints. This work proposes a path generation strategy based on parametric polynomials of third degree for the 'x' and 'y' axis. The 'theta' orientation is derived from the 'y' and 'x' relations in such a way that the generated path respects the kinematic constraint. To execute the trajectory, this work also shows a simple control strategy acting on the robot linear and angular velocities
Resumo:
This work presents a modelling and identification method for a wheeled mobile robot, including the actuator dynamics. Instead of the classic modelling approach, where the robot position coordinates (x,y) are utilized as state variables (resulting in a non linear model), the proposed discrete model is based on the travelled distance increment Delta_l. Thus, the resulting model is linear and time invariant and it can be identified through classical methods such as Recursive Least Mean Squares. This approach has a problem: Delta_l can not be directly measured. In this paper, this problem is solved using an estimate of Delta_l based on a second order polynomial approximation. Experimental data were colected and the proposed method was used to identify the model of a real robot
Resumo:
Quadrotors aircraft are composed by four propellers mounted on four engines on a cross or x disposition, and, in this structure, the engines on the same arm spin in the same direction and the other arm in the opposite direction. By rotating each helix generates vertical upward thrust. The control is done by varying the rotational speed of each motor. Among the advantages of this type of vehicle can cite the mechanical simplicity of construction, the high degree of maneuverability and the ability to have vertical takeoffs and landings. The modeling and control of quadrirrotores have been a challenge due to problems such as nonlinearity and coupling between variables. Several strategies have been developed to control this type of vehicle, from the classical control to modern. There are air surveillance applications where a camera is fixed on the vehicle to point forward, where it is desired that the quadrotor moves at a fixed altitude toward the target also pointing forward, which imposes an artificial constraint motion, because it is not desired that it moves laterally, but only forwards or backwards and around its axes . This restriction is similar to the naturally existing on robots powered by wheels with differential drive, which also can not move laterally, due to the friction of the wheels. Therefore, a position control strategy similar to that used in this type of robot could be adapted for aerial robots like quadrotor. This dissertation presents and discusses some strategies for the control of position and orientation of quadrotors found in the literature and proposes a strategy based on dynamic control of mobile robots with differential drive, called the variable reference control. The validity of the proposed strategy is demonstrated through computer simulations
Resumo:
Mobile robots need autonomy to fulfill their tasks. Such autonomy is related whith their capacity to explorer and to recognize their navigation environments. In this context, the present work considers techniques for the classification and extraction of features from images, using artificial neural networks. This images are used in the mapping and localization system of LACE (Automation and Evolutive Computing Laboratory) mobile robot. In this direction, the robot uses a sensorial system composed by ultrasound sensors and a catadioptric vision system equipped with a camera and a conical mirror. The mapping system is composed of three modules; two of them will be presented in this paper: the classifier and the characterizer modules. Results of these modules simulations are presented in this paper.
Resumo:
A current trend in the agricultural area is the development of mobile robots and autonomous vehicles for precision agriculture (PA). One of the major challenges in the design of these robots is the development of the electronic architecture for the control of the devices. In a joint project among research institutions and a private company in Brazil a multifunctional robotic platform for information acquisition in PA is being designed. This platform has as main characteristics four-wheel propulsion and independent steering, adjustable width, span of 1,80m in height, diesel engine, hydraulic system, and a CAN-based networked control system (NCS). This paper presents a NCS solution for the platform guidance by the four-wheel hydraulic steering distributed control. The control strategy, centered on the robot manipulators control theory, is based on the difference between the desired and actual position and considering the angular speed of the wheels. The results demonstrate that the NCS was simple and efficient, providing suitable steering performance for the platform guidance. Even though the simplicity of the NCS solution developed, it also overcame some verified control challenges in the robot guidance system design such as the hydraulic system delay, nonlinearities in the steering actuators, and inertia in the steering system due the friction of different terrains. Copyright © 2012 Eduardo Pacincia Godoy et al.
Resumo:
This work presents the development and integration of an user interface (UI) framework based on various current input devices that take advantage of our ergonomics. The purpose is to teleoperate a holonomic robot using upper member gestures and postures for studying the suitable of such interfaces when programming and interacting with a mobile robot. As performance vary from UI to UI the framework is focused to be used as a complementary industrial or didactic tool thus, changing how inexperience users tackle their first impressions when working with mobile robots while performing simple gesture-based teleoperation tasks. © 2012 ICROS.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Esta dissertação de mestrado apresenta o projeto e a construção de um robô móvel terrestre denominado LOGBOT, com tração de movimento do tipo diferencial – com duas rodas motoras e uma roda livre para manter a estabilidade de sua estrutura em relação à superfície. O controle do robô dispõe dos modos de telemetria e autônomo. No modo de controle por telemetria (ROV), a comunicação do robô com a estação de controle é feita por radiofreqüência a uma distância de até um quilometro em ambientes externos, e até cem metros em ambientes internos. No modo de controle autônomo (AGV), o robô tem habilidade para navegar em ambientes internos e desconhecidos usando sempre a parede à sua esquerda como referência para a trajetória de seu movimento. A seqüência de movimentos para execução da trajetória é enviada para a estação de controle que realiza análises de desempenho do robô. Para executar suas tarefas no modo autônomo, a programação do robô conta com um agente inteligente reativo, que detecta características do ambiente (obstáculos, final de paredes, etc.) e decide sobre qual atitude deve ser executada pelo robô, com objetivo de contornar os obstáculos e controlar a velocidade de suas rodas. Os problemas de erro odométrico e suas correções com base no uso de informações sensoriais externas são devidamente tratados. Técnicas de controle hierárquico do robô como um todo e controle em malha fechada da velocidade das rodas do robô são usadas. Os resultados mostraram que o robô móvel LOGBOT é capaz de navegar, com estabilidade e precisão, em ambientes internos no formato de um corredor (wall following).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The AEDROMO (Experimental and Didactic Environment with Mobile Robots) is a versatile, user friendly and scalable environment that supports a wide range of experiments. In it there is an area that is similar to a desk where objects can interact with each other, including robots and other objects, and thus can perform numerous activities. In it's current state, AEDROMO has client computers that interact with the system through an interface, and thus realize the communication between the user and AEDROMO. This project offer support to create a new form of interface for AEDROMO and can therefore be used for devices running Android, the app developed in this project will serve as a basis for future work on this new interface