932 resultados para mitogen-activated protein kinase phosphatase-1
Resumo:
Staphylococcus aureus aggravates the allergic eosinophilic inflammation. We hypothesized that Staphylococcus aureus-derived enterotoxins directly affect eosinophil functions. Therefore, this study investigated the effects of Staphylococcal enterotoxins A and B (SEA and SEB) on human and mice eosinophil chemotaxis and adhesion in vitro, focusing on p38 MAPK phosphorylation and intracellular Ca(2+) mobilization. Eosinophil chemotaxis was evaluated using a microchemotaxis chamber, whereas adhesion was performed in VCAM-1 and ICAM-1-coated plates. Measurement of p38 MAPK phosphorylation and intracellular Ca(2+) levels were monitored by flow cytometry and fluorogenic calcium-binding dye, respectively. Prior incubation (30 to 240 min) of human blood eosinophils with SEA (0.5 to 3 ng/ml) significantly reduced eotaxin-, PAF- and RANTES-induced chemotaxis (P<0.05). Likewise, SEB (1 ng/ml, 30 min) significantly reduced eotaxin-induced human eosinophil chemotaxis (P<0.05). The reduction of eotaxin-induced human eosinophil chemotaxis by SEA and SEB was prevented by anti-MHC monoclonal antibody (1 μg/ml). In addition, SEA and SEB nearly suppressed the eotaxin-induced human eosinophil adhesion in ICAM-1- and VCAM-1-coated plates. SEA and SEB prevented the increases of p38 MAPK phosphorylation and Ca(2+) levels in eotaxin-activated human eosinophils. In separate protocols, we evaluated the effects of SEA on chemotaxis and adhesion of eosinophils obtained from mice bone marrow. SEA (10 ng/ml) significantly reduced the eotaxin-induced chemotaxis along with cell adhesion to both ICAM-1 and VCAM-1-coated plates (P<0.05). In conclusion, the inhibition by SEA and SEB of eosinophil functions (chemotaxis and adhesion) are associated with reductions of p38 MAPK phosphorylation and intracellular Ca(2+) mobilization.
Resumo:
We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phoxcontaining NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P < 0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2-to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P < 0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.
Resumo:
Several lines of evidence suggest that angiotensin II (A-II) participates in the postnatal development of the kidney in rats. Many effects of A-II are mediated by mitogen-activated protein kinase (MAPK) pathways. This study investigated the influence that treatment with losartan during lactation has on MAPKs and on A-II receptor types 1 (AT(1)) and 2 (AT(2)) expression in the renal cortices of the offspring of dams exposed to losartan during lactation. In addition, we evaluated the relationship between such expression and changes in renal function and structure. Rat pups from dams receiving 2% sucrose or losartan diluted in 2% sucrose (40 mg/dl) during lactation were killed 30 days after birth, and the kidneys were removed for histological, immunohistochemical, and Western blot analysis. AT(1) and AT(2) receptors and p-p38, c-Jun N-terminal kinases (p-JNK) and extracellular signal-regulated protein kinases (p-ERK) expression were evaluated using Western blot analysis. The study-group rats presented an increase in AT(2) receptor and MAPK expression. In addition, these rats also presented lower glomerular filtration rate (GFR), greater albuminuria, and changes in renal structure. In conclusion, newborn rats from dams exposed to losartan during lactation presented changes in renal structure and function, which were associated with AT(2) receptor and MAPK expression in the kidneys.
Resumo:
Changes in gene expression have been measured 24 h after injury to mammalian spinal cords that can and cannot regenerate In opossums there is a critical period of development when regeneration stops being possible at 9 days postnatal cervical spinal cords regenerate, at 12 days they do not By the use of marsupial cDNA microarrays we detected 158 genes that respond differentially to injury at the two ages critical for regeneration For selected candidates additional measurements were made by real time PCR and sites of their expression were shown by immunostaining Candidate genes have been classified so as to select those that promote or prevent regeneration Up regulated by injury at 8 days and/or down regulated by injury at 13 days were genes known to promote growth, such as Mitogen activated protein kinase kinase 1 or transcripton factor TCF7L2 By contrast, at 13 days up regulation occurred of Inhibitory molecules including annexins ephrins and genes related to apoptosis and neurodegeneranve diseases Certain genes such as calmodulin 1 and NOGO changed expression similarly in animals that could and could not regenerate without any additional changes in response to injury These findings confirmed and extended changes of gene expression found in earlier screens on 9 and 12 day preparations without lesions and provide a comprehensive list of genes that serve as a basis for testing how identified molecules singly or in combination, promote and prevent central nervous system regeneration (C) 2010 Elsevier B V All rights reserved
Resumo:
Pulmonary vascular remodeling is an important pathological feature of pulmonary hypertension, leading to increased pulmonary vascular resistance and reduced compliance. It involves thickening of all three layers of the blood vessel wall (due to hypertrophy and/or hyperplasia of the predominant cell type within each layer), as well as extracellular matrix deposition. Neomuscularisation of non-muscular arteries and formation of plexiform and neointimal lesions also occur. Stimuli responsible for remodeling involve transmural pressure, stretch, shear stress, hypoxia, various mediators [angiotensin II, endothelin (ET)-1, 5-hydroxytryptamine, growth factors, and inflammatory cytokines], increased serine elastase activity, and tenascin-C. In addition, there are reductions in the endothelium-derived antimitogenic substances, nitric oxide, and prostacyclin. Intracellular signalling mechanisms involved in pulmonary vascular remodeling include elevations in intracellular Ca2+ and activation of the phosphatidylinositol pathway, protein kinase C, and mitogen-activated protein kinase. In animal models of pulmonary hypertension, various drugs have been shown to attenuate pulmonary vascular remodeling. These include angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, ET receptor antagonists, ET-converting enzyme inhibitors, nitric oxide, phosphodiesterase 5 inhibitors, prostacyclin, Ca2+-channel antagonists, heparin, and serine elastase inhibitors. Inhibition of remodeling is generally accompanied by reductions in pulmonary artery pressure. The efficacy of some of the drugs varies, depending on the animal model of the disease. In view of the complexity of the remodeling process and the diverse aetiology of pulmonary hypertension in humans, it is to be anticipated that successful anti-remodeling therapy in the clinic will require a range of different drug options. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Duck hepatitis B viruses (DHBV), unlike mammalian hepadnaviruses, are thought to lack X genes, which encode transcription-regulatory proteins believed to contribute to the development of hepatocellular carcinoma. A lack of association of chronic DHBV infection with hepatocellular carcinoma development supports this belief. Here, we demonstrate that DHBV genomes have a hidden open reading frame from which a transcription-regulatory protein, designated DHBx, is expressed both in vitro and in vivo. We show that DHBx enhances neither viral protein expression, intracellular DNA synthesis, nor virion production when assayed in the full-length genome context in LMH cells. However, similar to mammalian hepadnavirus X proteins, DHBx activates cellular and viral promoters via the Raf-mitogen-activated protein kinase signaling pathway and localizes primarily in the cytoplasm. The functional similarities as,well as the weak sequence homologies of DHBx and the X proteins of mammalian hepadnaviruses strongly suggest a common ancestry of ortho- and avihepadnavirus X genes. In addition, our data disclose similar intracellular localization and transcription regulatory functions of the corresponding proteins, raise new questions as to their presumed role in hepatocarcinogenesis, and imply unique opportunities for deciphering of their still-enigmatic in vivo functions.
Resumo:
dEndocytosis is required for efficient mitogen-activated protein kinase (MAPK) activation by activated growth factor receptors. We examined if H-Ras and K-Ras proteins, which are distributed across different plasma membrane microdomains, have equal access to the endocytic compartment and whether this access is necessary for downstream signaling. Inhibition of endocytosis by dominant interfering dynamin-K44A blocked H-Ras but not K-Ras-mediated PC12 cell differentiation and selectively inhibited H-Ras- but not K-Ras-mediated Raf-1 activation in BHK cells. H-Ras- but not K-Ras-mediated Raf-1 activation was also selectively dependent on phosphoinositide 3-kinase activity. Stimulation of endocytosis and endocytic recycling by wildtype Rab5 potentiated H-Ras-mediated Raf-1 activation. In contrast, Rab5-Q79L, which stimulates endocytosis but not endocytic recycling, redistributed activated H-Ras from the plasma membrane into enlarged endosomes and inhibited H-Ras-mediated Raf-1 activation. Rab5-Q79L expression did not cause the accumulation of wild-type H-Ras in enlarged endosomes. Expression of wild-type Rab5 or Rab5-Q79L increased the specific activity of K-Ras-activated Raf-1 but did not result in any redistribution of K-Ras from the plasma membrane to endosomes. These results show that H-Ras but not K-Ras signaling though the Raf/MEK/MAPK cascade requires endocytosis and enclocytic recycling. The data also suggest a mechanism for returning Raf-1 to the cytosol after plasma membrane recruitment.
Resumo:
This study focuses on characterizing the genetic and biological alterations associated with squamous cell carcinoma development. Normal human epidermal keratinocytes (HEKs), cells isolated from a preneoplastic lesion (IEC-1), and two neoplastic cell lines, SCC-25 and COLD-16, were grown as raft cultures, and their gene expression profiles were screened using cDNA arrays. Our data indicated that the expression levels of at least 37 genes were significantly (P less than or equal to 0.05; 1.9% of genes screened) altered in neoplastic cells compared with normal cells. Of these genes, 10 genes were up-regulated and 27 genes were down-regulated in the neoplastic cells. In addition, 51% of the genes altered in the neoplastic cells were already altered in the preneoplastic IEC-1 cells. Immunohistochemical staining of patient tumors was used to verify the cDNA array analysis. Our analysis indicated that alterations in genes associated with extracellular matrix production and apoptosis are disrupted in preneoplastic cells, whereas later stages of neoplasia are associated with alterations in gene expression for genes involved in DNA repair or epidermal growth factor (EGF) receptor/mitogen-activated protein kinase kinase (MAPKK)/MAPK/activator protein-1 (AP-1) signaling. Subsequent functional analysis of the alterations in expression of the EGF receptor/MAPKK/MAPK/AP-1 genes suggested they did not contribute to the neoplastic phenotype.
Resumo:
In the present survey, we identified most of the genes involved in the receptor tyrosine kinase (RTK), mitogen activated protein kinase (MAPK) and Notch signaling pathways in the draft genome sequence of Ciona intestinalis, a basal chordate. Compared to vertebrates, most of the genes found in the Ciona genome had fewer paralogues, although several genes including ephrin, Eph and fringe appeared to have multiplied or duplicated independently in the ascidian genome. In contrast, some genes including kit/flt, PDGF and Trk receptor tyrosine kinases were not found in the present survey, suggesting that these genes are innovations in the vertebrate lineage or lost in the ascidian lineage. The gene set identified in the present analysis provides an insight into genes for the RTK, MAPK and Notch signaling pathways in the ancient chordate genome and thereby how chordates evolved these signaling pathway.
Resumo:
Random mutagenesis and genetic screens for impaired Raf function in Caenorhabditis elegans were used to identify six loss-of-function alleles of lin-45 raf that result in a substitution of a single amino acid. The mutations were classified as weak, intermediate, and strong based on phenotypic severity. We engineered these mutations into the homologous residues of vertebrate Raf-1 and analyzed the mutant proteins for their underlying biochemical defects. Surprisingly, phenotype strength did not correlate with the catalytic activity of the mutant proteins. Amino acid substitutions Val-589 and Ser-619 severely compromised Raf kinase activity, yet these mutants displayed weak phenotypes in the genetic screen. Interestingly, this is because these mutant Raf proteins efficiently activate the MAPK (mitogen-activated protein kinase) cascade in living cells, a result that may inform the analysis of knockout mice. Equally intriguing was the observation that mutant proteins with non-functional Ras-binding domains, and thereby deficient in Ras-mediated membrane recruitment, displayed only intermediate strength phenotypes. This confirms that secondary mechanisms exist to couple Ras to Raf in vivo. The strongest phenotype in the genetic screens was displayed by a S508N mutation that again did not correlate with a significant loss of kinase activity or membrane recruitment by oncogenic Ras in biochemical assays. Ser-508 lies within the Raf-1 activation loop, and mutation of this residue in Raf-1 and the equivalent Ser-615 in B-Raf revealed that this residue regulates Raf binding to MEK. Further characterization revealed that in response to activation by epidermal growth factor, the Raf-S508N mutant protein displayed both reduced catalytic activity and aberrant activation kinetics: characteristics that may explain the C. elegans phenotype.
Resumo:
We identified a novel human AMP-activated protein kinase (AMPK) family member, designated ARK5, encoding 661 amino acids with an estimated molecular mass of 74 kDa. The putative amino acid sequence reveals 47, 45.8, 42.4, and 55% homology to AMPK-alpha1, AMPK-alpha2, MELK and SNARE respectively, suggesting that it is a new member of the AMPK family. It has a putative Akt phosphorylation motif at amino acids 595600, and Ser(600) was found to be phosphorylated by active Akt resulting in the activation of kinase activity toward the SAMS peptide, a consensus AMPK substrate. During nutrient starvation, ARK5 supported the survival of cells in an Akt-dependent manner. In addition, we also demonstrated that ARK5, when activated by Akt, phosphorylated the ATM protein that is mutated in the human genetic disorder ataxia-telangiectasia and also induced the phosphorylation of p53. On the basis of our current findings, we propose that a novel AMPK family member, ARK5, is the tumor cell survival factor activated by Akt and acts as an ATM kinase under the conditions of nutrient starvation.
Resumo:
Excitotoxic insults induce c-Jun N-terminal kinase (JNK) activation, which leads to neuronal death and contributes to many neurological conditions such as cerebral ischemia and neurodegenerative disorders. The action of JNK can be inhibited by the D-retro-inverso form of JNK inhibitor peptide (D-JNKI1), which totally prevents death induced by N-methyl-D-aspartate (NMDA) in vitro and strongly protects against different in vivo paradigms of excitotoxicity. To obtain optimal neuroprotection, it is imperative to elucidate the prosurvival action of D-JNKI1 and the death pathways that it inhibits. In cortical neuronal cultures, we first investigate the pathways by which NMDA induces JNK activation and show a rapid and selective phosphorylation of mitogen-activated protein kinase kinase 7 (MKK7), whereas the only other known JNK activator, mitogen-activated protein kinase kinase 4 (MKK4), was unaffected. We then analyze the action of D-JNKI1 on four JNK targets containing a JNK-binding domain: MAPK-activating death domain-containing protein/differentially expressed in normal and neoplastic cells (MADD/DENN), MKK7, MKK4 and JNK-interacting protein-1 (IB1/JIP-1).
Resumo:
Preservation of beta cell against apoptosis is one of the therapeutic benefits of the glucagon-like peptide-1 (GLP1) antidiabetic mimetics for preserving the functional beta cell mass exposed to diabetogenic condition including proinflammatory cytokines. The mitogen activated protein kinase 10 also called c-jun amino-terminal kinase 3 (JNK3) plays a protective role in insulin-secreting cells against death caused by cytokines. In this study, we investigated whether the JNK3 expression is associated with the protective effect elicited by the GLP1 mimetic exendin 4. We found an increase in the abundance of JNK3 in isolated human islets and INS-1E cells cultured with exendin 4. Induction of JNK3 by exendin 4 was associated with an increased survival of INS-1E cells. Silencing of JNK3 prevented the cytoprotective effect of exendin 4 against apoptosis elicited by culture condition and cytokines. These results emphasize the requirement of JNK3 in the antiapoptotic effects of exendin 4.
Resumo:
Islet-Brain 1 (IB1) (also called JNK-interacting protein 1; JIP1) is a scaffold protein that tethers components of the JNK mitogen-activated protein kinase pathway inducing a modulation of the activity and the target specificity of the JNK kinases. Dysfunctions in IB1 have been associated with diseases such as early type II diabetes. To gain more insight in the functions of IB1, its ability to modulate the expression levels of the various JNK proteins was assessed. Each of the three JNK genes gives rise to several splice variants encoding short or long proteins. The expression levels of the short JNK proteins, but not of the long variants, were systematically higher in rat tissues and in transformed cell lines expressing high IB1 levels compared to tissues and cells with no or low IB1 expression. HEK293 cells bearing a tetracycline-inducible IB1 construct showed a specific increase of the short JNK endogenous splice variants in the presence of tetracycline. The augmented expression level of the short JNK splice variants induced by IB1 resulted from an increased stability towards degradation. Modulation of the stability of specific JNK splice variants represents therefore a newly identified mechanism used by IB1 to regulate the JNK MAPK pathway.
Resumo:
In this paper, we provide evidence that both the mRNA and protein levels of the cyclin-dependent kinase (CDK) inhibitor p21WAF1/CDK-interacting protein 1 (Cip1) increase upon infection of A431 cells with Vaccinia virus (VACV). In addition, the VACV growth factor (VGF) seems to be required for the gene expression because infection carried out with the mutant virus VACV-VGF- revealed that this strain was unable to stimulate its transcription. Our findings are also consistent with the notion that the VGF-mediated change in p21WAF1/Cip1 expression is dependent on tyrosine kinase pathway(s) and is partially dependent on mitogen-activated protein kinase/extracellular-signal regulated kinase 1/2. We believe that these pathways are biologically significant because VACV replication and dissemination was drastically affected when the infection was carried out in the presence of the relevant pharmacological inhibitors.