973 resultados para microtensile bond strength test
Resumo:
The purpose of this study was to evaluate the effectiveness of different light-curing units on the bond strength (push-out) of glass fiber posts in the different thirds of the root (cervical, middle and apical) with different adhesive luting resin systems (dual-cure total-etch; dual-cured and self-etch bonding system; and dual-cure self-adhesive cements), Disks of the samples (n = 144) were used, with approximately 1 mm of thickness of 48 bovine roots restored with glass fiber posts, that were luted with resin cements photo-activated by halogen LCU (QTH, Optilux 501) and blue LED (Ultraled), with power densities of 600 and 550 mW/cm 2, respectively. A universal testing machine (MTS 810 Material Test System) was used with a 1 mm diameter steel rod at cross-head speed of 0.5 mm/min until post extrusion, with load cell of 50 kg, for evaluation of the push-out strength in the different thirds of each sample. The push-out strength values in kgf were converted to MPa and analyzed through Analysis of Variance and Tukey's test, at significance level of 5%. The results showed that there were no statistical differences between the QTH and LED LCUs. The self-adhesive resin cement had lower values of retention. The total-etch and self-adhesive system resin cements seem to be a possible alternative for glass fiber posts cementation into the radicular canal and the LED LCU can be applied as an alternative to halogen light on photo-activation of dual-cured resin cements. © 2009 Pleiades Publishing, Ltd.
Resumo:
The aim of this study was to evaluate the effect of desensitizing agents on the micro-shear bond strength of adhesive systems to dentin. Forty bovine teeth were divided into 8 groups (n=5): G1--Single Bond (SB); G2--GH.F + SB; G3-- Desensibilize + SB; G4--essensiv + SB; G5 --ingle Bond 2 (SB2); G6--H.E + SB2; G7--esensibilize + SB2; G8--Dessensiv + SB2. In all of the groups, the desensitizing agents were applied after phosphoric acid etching and before the dentin adhesive application. Z250 composite resin tubes were bonded on the treated surface. After 24 hours, the teeth were tested in a universal machine. Data were submitted to ANOVA and Tukey's test (5%). The results showed that the groups where Desensibilize and Dessensiv were applied exhibited smaller bond strength values.
Resumo:
The aim of this in vitro study was to compare the photoactivation effects of QTH (Quartz-Tungsten-Halogen) and LED (Light-Emitting Diode) on the SBS (Shear Bond Strength) of orthodontic brackets at different debond times. Seventy-two bovine lower incisors were randomly divided into two groups according to the photoactivation system used (QTH or LED). The enamel surfaces were conditioned with Transbond self-etching primer, and APC (Adhesive Pre-Coated) brackets were used in all specimens. Group I was cured with QTH for 20 s and Group II with LED for 10 s. Both groups were subdivided according to the different experimental times after bonding (immediately, 24 h and 7 days). The specimens were tested for SBS and the enamel surfaces were analyzed according to the Adhesive Remnant Index (ARI). The statistical analysis included the Tukey's test to evaluate the main effects of photoactivation and debond time on SBS. The Chi-square test was used to compare the ARI values found for each group, and no statistically significant difference was observed. The debond time of 7 days for QTH photoactivation showed statistically greater values of SBS when compared to the immediate and 24 h periods. There was no statistically significant difference between the QTH and LED groups immediately and after the 24 h period. In conclusion, bonding orthodontic brackets with LED photoactivation for 10 s is suggested because it requires a reduced clinical chair time.
Resumo:
The aim of this study was to evaluate the effect of brushing with a Colgate 360° or Oral B Indicator 35 toothbrush on the shear bond strength of orthodontic brackets bonded to extracted human teeth. The bristle wear and bristle tip morphology were also examined after simulated tooth-brushing. Orthodontic brackets (Roth-P/1 st and 2 nd pre-molar S/D- Slot 0.18) were bonded (Transbond XT ®) to the smoothest surface of each of 45 extracted human molar and premolar teeth. Test specimens were randomly divided into three groups: Group 1, control group with no brushing; Group 2, brushing with the Oral B Indicator 35; Group 3, brushing with the Colgate 360°. Samples were adapted to a machine that simulated tooth-brushing. The bond strength of each bracket to each tooth was assessed with a mechanical testing machine. The bristle wear and bristle tip morphology indices were also assessed. Statistically significant differences were defined for p ≤ 0.05. The average bond strengths (range: 90.18-90.89 kgf/cm 2) did not differ among the three groups. The Colgate 360° showed less bristle wear and a better bristle tip morphology than the Oral B Indicator 35 toothbrush. However, use of either toothbrush did not decrease the bond strength of the orthodontic brackets. Therefore, patients undergoing orthodontic therapy can safely use either toothbrush.
Resumo:
Investigation of the effectiveness of surface treatments that promote a strong bond strength of resin cements to metals can contribute significantly to the longevity of metal-ceramic restorations. This study evaluated the effect of surface treatments on the shear bond strength (SBS) of a resin cement to commercially pure titanium (CP Ti). Ninety cast CP Ti discs were divided into 3 groups (n=30), which received one of the following airborne-particle abrasion conditions: (1) 50 μm Al2O3 particles; (2) 30 μm silica-modified Al2O3 particles (Cojet Sand); (3) 110 μm silica-modified Al2O3 particles (Rocatec). For each airborne-particle abrasion condition, the following post-airborne-particle abrasion treatments were used (n=10): (1) none; (2) adhesive Adper Single Bond 2; (3) silane RelyX Ceramic Primer. RelyX ARC resin cement was bonded to CP Ti surfaces. All specimens were thermally cycled before being tested in shear mode. Failure mode was determined. The best association was Rocatec plus silane. All groups showed 100% adhesive failure. There were combinations that promote higher SBS than the protocol recommended by the manufacturer of RelyX ARC.
Resumo:
The aim of this study was to assess the influence of resin cement insertion methods on the bond strength of a fiber post to root dentin and quality of the cement layer. Forty bovine single-roots (length =16 mm) were randomly allocated into four groups, according to the cement insertion methods (N.=10): Gr1- Lentulo drill #40, Gr2- Centrix syringe, Gr3- Explorer #5, Gr4- fiber post. The root canals were prepared at 12 mm, using preparation bur # 3 of a cylinder quartz-FRC post (Aesthet post-plus, Bisco). The fiber posts were cemented using a multi-step etch-and-rinse adhesive system (All Bond 2®, Bisco) and a dual-cured resin cement (Duolink, Bisco). Each root was cut into seven samples: four samples of 1.8 mm thickness for push-out testing, and three with 0.5 mm for cement layer quality analyzing. One-way ANOVA was used for the push-out test values and the One-Way Kruskal-Wallis (P<0.05) and Dunn (10%) tests for the cement layer analyzes. ANOVA showed that the cement layer quality was affected by the cement insertion methods (P=0.0044): Gr1 (3.8 ± 1.3a), Gr2 (3.2 ± 1.3a), Gr3 (5.2 ± 1.5a,b) and Gr4 (5.2 ± 1.5b) (Dunn test), whereas the bond strength (MPa) was not affected by cement insertion methods: G1 (4.2 ± 1.3), G2 (3.2 ± 1.8), G3 (4.5 ± 0.9), G4 (3.1 ± 1.3). The fiber posts should be cemented with the assistance of the lentulo drill or centrix syringe to promote the best cement layer results.
Resumo:
Objective: Although direct bonding takes up less clinical time and ensures increased preservation of gingival health, the banding of molar teeth is still widespread nowadays. It would therefore be convenient to devise methods capable of increasing the efficiency of this procedure, notably for teeth subjected to substantial masticatory impact, such as molars. This study was conducted with the purpose of evaluating whether direct bonding would benefit from the application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface. Methods: A sample of 40 mandibular third molars was selected and randomly divided into two groups: Group 1 - Conventional direct bonding, followed by the application of a layer of resin to the occlusal surfaces of the tube/tooth interface, and Group 2 - Conventional direct bonding. Shear bond strength was tested 24 hours after bonding with the aid of a universal testing machine operating at a speed of 0.5mm/min. The results were analyzed using the independent t-test. Results: The shear bond strength tests yielded the following mean values: 17.08 MPa for Group 1 and 12.60 MPa for Group 2. Group 1 showed higher statistically significant shear bond strength than Group 2. Conclusions: The application of an additional layer of resin to the occlusal surfaces of the tube/tooth interface was found to enhance bond strength quality of orthodontic buccal tubes bonded directly to molar teeth.
Resumo:
The aim of this paper was to evaluate two surface conditioning methods associated with the application of adhesive on the post surface for improving the bond to resin cement. Sixty single-rooted bovine teeth were sectioned at 16 mm in length, prepared (9 mm depth), embedded in a PVC cylinder using acrylic resin, and allocated into 3 groups (N.=20) according to post surface treatment: cleaning with ethanol (control group); etching with hydrogen peroxide; etching with hydrofluoric acid. Ten posts for each group were silanized and other 10 posts were silanized and received an adhesive agent. The posts were cemented with self-adhesive resin cement (RelyX U100 resin cement). All teeth were sectioned perpendicularly to the long axis (2 mm thickness per slice), submitted to push out bond strength testing and the type of failure was recorded. The obtained data were submitted to two-way ANOVA and Turkey's test, with the level of significance set at 5%. Neither the hydrofluoric acid or hydrogen peroxide post surface treatment, nor the adhesive application, had an influence on bond strength values. The main type of failure was adhesive between cement and dentin. Etching and the application of an adhesive on the post surface did not presented a significant influence on the bond strength results for the fiber post resin cement-root dentin assembly. The cement appears to adhere very well to the fiber post surface rather than the dentin surface.
Resumo:
Purpose: To evaluate the shear bond strength and bond durability between a dual-cured resin cement (RC) and a high alumina ceramic (In-Ceram Alumina), subjected to two surface treatments. Materials and Methods: Forty disc-shaped specimens (sp) (4-mm diameter, 5-mm thick) were fabricated from In-Ceram Alumina and divided into two groups (n = 20) in accordance with surface treatment: (1) sandblasting by aluminum oxide particles (50 μm Al 2O 3) (SB) and (2) silica coating (30 μm SiO x) using the CoJet system (SC). After the 40 sp were bonded to the dual-cured RC, they were stored in distilled water at 37°C for 24 hours. After this period, the sp from each group were divided into two conditions of storage (n = 10): (a) 24 h-shear bond test 24 hours after cementation; (b) Aging-thermocycling (TC) (12,000 times, 5 to 55°C) and water storage (150 days). The shear test was performed in a universal test machine (1 mm/min). Results: ANOVA and Tukey (5%) tests noted no statistically significant difference in the bond strength values between the two surface treatments (p= 0.7897). The bond strengths (MPa) for both surface treatments reduced significantly after aging (SB-24: 8.2 ± 4.6; SB-Aging: 3.7 ± 2.5; SC-24: 8.6 ± 2.2; SC-Aging: 3.5 ± 3.1). Conclusion: Surface conditioning using airborne particle abrasion with either 50 μm alumina or 30 μm silica particles exhibited similar bond strength values and decreased after long-term TC and water storage for both methods. © 2011 by The American College of Prosthodontists.
Resumo:
This study evaluated three surface treatments and their effects on the shear bond strength between a resin cement and one of three ceramics. The ceramic surfaces were evaluated with scanning electron microscopy (SEM ) as well. Specimens were treated with 50 μm aluminum oxide airborne particles, 10% hydrofluoric acid etching, or a combination of the two. Using a matrix with a center hole (5.0 mm × 3.0 mm), the ceramic bonding areas were filled with resin cement following treatment. The specimens were submitted to thermal cycling (1,000 cycles) and the shear bond strength was tested (0.5 mm/minute). The failure mode and the effect of surface treatment were analyzed under SEM . Data were submitted to ANOVA and a Tukey test (α = 0.05). Duceram Plus and IPS Empress 2 composite specimens produced similar shear bond strength results (p > 0.05), regardless of the treatment method used. Hydrofluoric acid decreased the shear bond strength of In-Ceram Alumina specimens. For all materials, surface treatments changed the morphological surface. All treatments influenced the shear bond strength and failure mode of the ceramic/resin cement composites.
Resumo:
The aim of this in vitro study was to evaluate the shear bond strength of brackets after pre-treatment with different fluoride solutions. This study used 48 freshly extracted sound bovine incisors that were randomly assigned to 4 experimental groups (n=12). CG: (control) without treatment; NF: 4 min application of neutral fluoride; APF: application of 1.23% acidulated phosphate fluoride (APF) for 4 min; and SFV: application of 5% sodium fluoride varnish for 6 h. For each group, after surface treatment, prophylaxis of enamel and bracket bonding with Transbond XT composite resin (3M) were performed following the manufacturer's specifications. The shear bond strength was performed with a universal testing machine 24 h after fixing the brackets. The tooth surfaces were analyzed to verify the adhesive remnant index (ARI). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was statistically significant difference among the groups (p<0.0001). CG and NF groups presented significantly higher bond strength than APF and SFV. There was no significant difference between CG and NF or between APF and SFV (p>0.05). The analysis of ARI scores revealed that most failures occurred at the enamel-resin interface. It may be concluded that the pre-treatment of enamel with 1.23% APF and 5% SFV prior to fixing orthodontic brackets reduces shear bond strength values.
Resumo:
The aim of this study was to evaluate the effects of different light-curing units and resin cement curing types on the bond durability of a feldspathic ceramic bonded to dentin. The crowns of 40 human molars were sectioned, exposing the dentin. Forty ceramic blocks of VITA VM7 were produced according to the manufacturer's recommendations. The ceramic surface was etched with 10% hydrofluoric acid/60s and silanized. The dentin was treated with37% phosphoric acid/15s, and the adhesive was applied. The ceramic blocks were divided and cemented to dentin according to resin cement/RC curing type(dual-and photocured), light-curing unit (halogen light/QTH and LED), and storage conditions (dry and storage/150 days + 12,000 cycles/thermocycling). All blocks were stored in distilled water (37°C/24h) and sectioned (n = 10): G1-QTH + RC Photo, G2-QTH + RC Dual, G3-LED + RC Photo, G4-LED + RC Dual. Groups G5, G6, G7, and G8 were obtained exactly as G1 through G4, respectively, and then stored and thermocycled. Microtensile bond strength tests were performed (EMIC), and data were statistically analyzed by ANOVA and Tukey's test (5%). The bond strength values (MPa) were: G1-12.95 (6.40)ab; G2-12.02 (4.59)ab; G3-13.09 (5.62)ab; G4-15.96 (6.32)a; G5-6.22 (5.90)c; G6-9.48 (5.99)bc; G7-12.78 (11.30)ab; and G8-8.34 (5.98)bc. The same superscript letters indicate no significant differences. Different light-curing units affected the bond strength betweenceramic cemented to dentin when the photocured cement was used, and only after aging (LED>QTH). There was no difference between the effects of dual-and photo-cured resin-luting agents on the microtensile bond strength of the cement used in this study.
Resumo:
Objectives: This study investigated the effect of extreme cooling methods on the flexural strength, reliability and shear bond strength of veneer porcelain for zirconia. Methods: Vita VM9 porcelain was sintered on zirconia bar specimens and cooled by one of the following methods: inside a switched-off furnace (slow), at room temperature (normal) or immediately by compressed air (fast). Three-point flexural strength tests (FS) were performed on specimens with porcelain under tension (PT, n = 30) and zirconia under tension (ZT, n = 30). Shear bond strength tests (SBS, n = 15) were performed on cylindrical blocks of porcelain, which were applied on zirconia plates. Data were submitted to one-way ANOVA and Tukey's post hoc tests (p < 0.05). Weibull analysis was performed on the PT and ZT configurations. Results: One-way ANOVA for the PT configuration was significant, and Tukey's test revealed that fast cooling leads to significantly higher values (p < 0.01) than the other cooling methods. One-way ANOVA for the ZT configuration was not significant (p = 0.06). Weibull analysis showed that normal cooling had slightly higher reliability for both the PT and ZT configurations. Statistical tests showed that slow cooling decreased the SBS value (p < 0.01) and showed less adhesive fracture modes than the other cooling methods. Clinical Significance: Slow cooling seems to affect the veneer resistance and adhesion to the zirconia core; however, the reliability of fast cooling was slightly lower than that of the other methods. © 2013 Elsevier Ltd.
Resumo:
INTRODUÇÃO: frequentemente, os pacientes ortodônticos apresentam restaurações de resina composta; no entanto, existem poucos estudos que avaliam a melhor forma de colagem ortodôntica nessa situação. OBJETIVO: o objetivo do presente trabalho foi avaliar a força adesiva de braquetes ortodônticos em restaurações resinosas com tratamento de superfície. MÉTODOS: foram utilizados 51 incisivos inferiores bovinos divididos aleatoriamente em três grupos. No grupo controle (GC), os braquetes foram colados em esmalte dentário; nos grupos experimentais com tratamento (GCT) e sem tratamento (GST), os braquetes foram colados em restauração de resina previamente realizada, diferenciando-se pelo tratamento de superfície com broca diamantada. Os dentes foram incluídos em tubos de PVC com resina acrílica autopolimerizável. O ensaio de cisalhamento foi executado em máquina universal de ensaios Emic. Os grupos foram submetidos à ANOVA com pós-teste de Tukey para verificação da diferença estatística entre os grupos (α = 0,05). RESULTADOS: GC (6,62MPa) e GCT (6,82MPa) apresentaram resultados semelhantes, enquanto o GST (5,07MPa) obteve resultados estatisticamente menores (p < 0,05). CONCLUSÃO: conclui-se que a melhor técnica de colagem de braquetes ortodônticos em restaurações de resina composta é a de realização de desgaste sobre a superfície.
Resumo:
Purpose: To compare the shear bond strength (SBS) of two cements to two Y-TZP ceramics subjected to different surface treatments.Materials and Methods: Zirconia specimens were made from Lava (n = 36) and IPS e.max ZirCAD (n = 36), and their surfaces were treated as follows: no treatment (control), silica coating with 30-mu m silica-modified alumina (Al2O3) particles (CoJet Sand), or coating with liners Lava Ceram for Lava and Intensive ZirLiner for IPS e.max ZirCAD. Composite resin cylinders were bonded to zirconia with Panavia F or RelyX Unicem resin cements. All specimens were thermocycled (6000 cycles at 5 degrees C/55 degrees C) and subjected to SBS testing. Data were analyzed by post-hoc test Tamhane T2 and Scheffe tests (alpha = 0.05). Failure mode was analyzed by stereomicroscope and SEM.Results: With both zirconia brands, CoJet Sand showed significantly higher SBS values than control groups only when used with RelyX Unicem (p = 0.0001). Surface treatment with liners gave higher SBS than control groups with both ceramic brands and cements (p < 0.001). With both zirconia brands, the highest SBS values were obtained with the CoJet and RelyX Unicem combination (> 13.47 MPa). Panavia F cement showed significantly better results when coupled with liner surface treatment rather than with CoJet (p = 0.0001, SBS > 12.23 MPa). In untreated controls, Panavia F showed higher bond strength than RelyX Unicem; the difference was significant (p = 0.016) in IPS e.max ZirCAD. The nontreated specimens and those treated with CoJet Sand exhibited a high percentage of adhesive and mixed A (primarily adhesive) failures, while the specimens treated with liners presented an increase in mixed A and mixed C (primarily cohesive) failures as well as some cohesive failure in the bulk of Lava Ceram for both cements.Conclusion: CoJet Sand and liner application effectively improved the SBS between zirconia and luting cements. This study suggests that different interactions between surface treatments and luting cements yield different SBS: in clinical practice, these interactions should be considered when combining luting cements with surface treatments in order to obtain the maximum bond strength to zirconia restorations.