927 resultados para mechanical analysis
Resumo:
The most-used refrigeration system is the vapor-compression system. In this cycle, the compressor is the most complex and expensive component, especially the reciprocating semihermetic type, which is often used in food product conservation. This component is very sensitive to variations in its operating conditions. If these conditions reach unacceptable levels, failures are practically inevitable. Therefore, maintenance actions should be taken in order to maintain good performance of such compressors and to avoid undesirable stops of the system. To achieve such a goal, one has to evaluate the reliability of the system and/or the components. In this case, reliability means the probability that some equipment cannot perform their requested functions for an established time period, under defined operating conditions. One of the tools used to improve component reliability is the failure mode and effect analysis (FMEA). This paper proposes that the methodology of FMEA be used as a tool to evaluate the main failures found in semihermetic reciprocating compressors used in refrigeration systems. Based on the results, some suggestions for maintenance are addressed.
Resumo:
Void fraction sensors are important instruments not only for monitoring two-phase flow, but for furnishing an important parameter for obtaining flow map pattern and two-phase flow heat transfer coefficient as well. This work presents the experimental results obtained with the analysis of two axially spaced multiple-electrode impedance sensors tested in an upward air-water two-phase flow in a vertical tube for void fraction measurements. An electronic circuit was developed for signal generation and post-treatment of each sensor signal. By phase shifting the electrodes supplying the signal, it was possible to establish a rotating electric field sweeping across the test section. The fundamental principle of using a multiple-electrode configuration is based on reducing signal sensitivity to the non-uniform cross-section void fraction distribution problem. Static calibration curves were obtained for both sensors, and dynamic signal analyses for bubbly, slug, and turbulent churn flows were carried out. Flow parameters such as Taylor bubble velocity and length were obtained by using cross-correlation techniques. As an application of the void fraction tested, vertical flow pattern identification could be established by using the probability density function technique for void fractions ranging from 0% to nearly 70%.
Resumo:
This work presents a comparison between laser weld (LBW) and electric resistance spot weld (ERSW) processes used for assemblies of components in a body-in-white (BIW) at a world class automotive industry. It is carried out by evaluating the mechanical strength modeled both by experimental and numerical methods. An ""Arcan"" multiaxial test was designed and manufactured in order to enable 0 degrees, 45 degrees and 90 degrees directional loadings. The welded specimens were uncoated low carbon steel sheets (S-y = 170 MPa) used currently at the automotive industry, with two different thicknesses: 0.80 and 1.20 mm. A numerical analysis was carried out using the finite element method (FEM) through LS-DYNA code. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The premature failure of a large agglomeration machine used for the annual production of 360,000 m(3) of eucalypt fiber panels was investigated to identify the nucleation and growth mechanisms of cracking in PH stainless steel belts (126 m x 2.9 m x 3.0 mm). These belts are used to compress a cushion composed of eucalyptus fibers and glue, being the pressure transmitted from the pistons by the action of numerous case-hardening steel rolls. Examination of the belt working interfaces (belt/rolls and belt/eucalypt fibers) indicated that the main cracking was nucleated on the belt/roll interface and that there is a clear relationship between the crack nucleation and the presence of superficial irregularities, which were observed on the belt/roll working surface. Used rolls showed the presence of perimetric wear marks and 2 mu m silicon-rich encrusted particles (identified as silicon carbide). Lubricant residues contained the presence of helicoidal wires, which were originated by the release of the stainless steel cleaning brush bristles, and 15 mu m diameter metallic particles, which were generated by material detachment of the belt. The presence of foreign particles on the tribological interface contributed to an increase of the shear stresses at the surfaces and, consequently, the number of the contact fatigue crack nucleation sites in the belt/roll tribo-interface. The cracking was originated on the belt/roll interface of the stainless steel belt by a mixed rolling/slip contact fatigue mechanism, which promoted spalling and further nucleation and growth of conventional fatigue cracks. Finally, the system lubrication efficiency and the cleaning procedure should be optimised in order to increase the life expectancy of the belt. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Alpha prime formation leads to material embrittlement and deterioration of corrosion resistance. In the present study, the mechanical and corrosion behavior of super duplex stainless steel UNS S32520 aged at 475 degrees C from 0.5 h to 1,032 h was evaluated using microhardness measurements, Charpy impact tests, electrochemical impedance spectroscopy, and cyclic polarization curves. The sensibility of these tests to the effects of alpha prime phase was investigated. The microhardness test showed a gradual increase in hardness with aging time, whereas the impact tests revealed losses of about 80% in the energy absorption capacity for the material aged for 12 h in comparison with the solution-annealed samples. The most responsive analysis was the impact test, which indirectly revealed the presence of this deleterious phase in samples aged for 0.5 h. The electrochemical impedance spectroscopy and polarization tests were not highly sensitive to the alpha prime phase unless these are present in large amounts in the stainless steel.
Resumo:
A brief look at the history of fractography has shown a recent trend in the quantification of topographic parameters through the use of three-dimensional reconstruction techniques, which associate SEM stereoscopy and stereophotogrammetry software, allowing the calculation of the elevation measurement at numerous points of the topography due to the parallax that takes place during the tilting of the sample along the microscope eucentric plane. Several investigators have used reconstruction techniques to correlate some fractographic parameters, such as fractal dimension and fractured to projected area ratio, to the mechanical properties of materials, such as fracture toughness and tensile strength. So far, the search for a clear relationship between the fracture topography and mechanical properties has provided ambiguous results. The present work applied a surface metrology software to reconstruct three-dimensionally fracture surfaces (transgranular cleavage, intergranular and dimple fracture), corrosion pits and tribo-surfaces in order to explore the potential of this stereophotogrammetry technique. The existence of a variation in the calculated topographic parameters with the conditions of SEM image acquisition reinforces the importance of both good image acquisition and accurate calibration methods in order to validate this 3D reconstruction technique in metrological terms. Preliminary results did not indicate the existence of a clear relationship between either the true to project area ratio and CVN absorbed energy or the fractal dimension and CVN absorbed energy. It is likely that each fracture mechanism presents a proper relationship between the fractographic parameters and mechanical properties. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The performance optimisation of overhead conductors depends on the systematic investigation of the fretting fatigue mechanisms in the conductor/clamping system. As a consequence, a fretting fatigue rig was designed and a limited range of fatigue tests was carried out at the middle high cycle fatigue regime in order to access an exploratory S-N curve for a Grosbeak conductor, which was mounted on a mono-articulated aluminium clamping system. Subsequent to these preliminary fatigue tests, the components of the conductor/clamping system, such as ACSR conductor, upper and lower clamps, bolt and nuts, were subjected to a failure analysis procedure in order to investigate the metallurgical free variables interfering on the fatigue test results, aiming at the optimisation of the testing reproducibility. The results indicated that the rupture of the planar fracture surfaces observed in the external At strands of the conductor tested under lower bending amplitude (0.9 mm) occurred by fatigue cracking (I mm deep), followed by shear overload. The V-type fracture surfaces observed in some At strands of the conductor tested under higher bending amplitude (1.3 mm) were also produced by fatigue cracking (approximately 400 mu m deep), followed by shear overload. Shear overload fracture (45 degrees fracture surface) was also observed on the remaining At wires of the conductor tested under higher bending amplitude (1.3 mm). Additionally, the upper and lower Al-cast clamps presented microstructure-sensitive cracking, which was folowed by particle detachment and formation of abrasive debris on the clamp/conductor tribo-interface, promoting even further the fretting mechanism. The detrimental formation of abrasive debris might be inhibited by the selection of a more suitable class of as-cast At alloy for the production of clamps. Finally, the bolt/nut system showed intense degradation of the carbon steel nut (fabricated in ferritic-pearlitic carbon steel, featuring machined threads with 190 HV), with intense plastic deformation and loss of material. Proper selection of both the bolt and nut materials and the finishing processing might prevent the loss in the clamping pressure during the fretting testing. It is important to control the specification of these components (clamps, bolt and nuts) prior to the start of large scale fretting fatigue testing of the overhead conductors in order to increase the reproducibility of this assessment. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Cooling towers are widely used in many industrial and utility plants as a cooling medium, whose thermal performance is of vital importance. Despite the wide interest in cooling tower design, rating and its importance in energy conservation, there are few investigations concerning the integrated analysis of cooling systems. This work presents an approach for the systemic performance analysis of a cooling water system. The approach combines experimental design with mathematical modeling. An experimental investigation was carried out to characterize the mass transfer in the packing of the cooling tower as a function of the liquid and gas flow rates, whose results were within the range of the measurement accuracy. Then, an integrated model was developed that relies on the mass and heat transfer of the cooling tower, as well as on the hydraulic and thermal interactions with a heat exchanger network. The integrated model for the cooling water system was simulated and the temperature results agree with the experimental data of the real operation of the pilot plant. A case study illustrates the interaction in the system and the need for a systemic analysis of cooling water system. The proposed mathematical and experimental analysis should be useful for performance analysis of real-world cooling water systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work, an axisymmetric two-dimensional finite element model was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. The level of film residual stress (sigma(r)), the film elastic modulus (E) and the film work hardening exponent (n) were varied to analyze their effects on indentation data. These numerical results were used to analyze experimental data that were obtained with titanium nitride coated specimens, in which the substrate bias applied during deposition was modified to obtain films with different levels of sigma(r). Good qualitative correlation was obtained when numerical and experimental results were compared, as long as all film properties are considered in the analyses, and not only sigma(r). The numerical analyses were also used to further understand the effect of sigma(r) on the mechanical properties calculated based on instrumented indentation data. In this case, the hardness values obtained based on real or calculated contact areas are similar only when sink-in occurs, i.e. with high n or high ratio VIE, where Y is the yield strength of the film. In an additional analysis, four ratios (R/h(max)) between indenter tip radius and maximum penetration depth were simulated to analyze the combined effects of R and sigma(r) on the indentation load-displacement curves. In this case, or did not significantly affect the load curve exponent, which was affected only by the indenter tip radius. On the other hand, the proportional curvature coefficient was significantly affected by sigma(r) and n. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This article reports the characteristics of blast furnace slag (BFS) pastes activated with hydrated lime (5%) and hydrated lime (2%) plus gypsum (6%) in relation to compressive strength, shrinkage (autogenous and drying) and microstructure (porosity, hydrated products). The paste mixtures were characterized using powder X-ray diffraction (XRD), mercury intrusion porosimetry (MIP) and thermogravimetric analysis (TG/DTG). BSF activated with lime and gypsum (LG) results in larger amounts of ettringite when compared with BFS activated with lime (L). Although the porosities of the L and LG mixtures were about the same, there was a greater pore refinement for the BFS activated with lime, with an increase in mesopores volume with age. The presence of ettringite and the higher volumes of macropores cause the compressive strength of BSF activated with hydrated lime plus gypsum to be smaller than that of BFS activated with lime. For both chemical activators, compressive strength developed slowly at early ages. Autogenous and drying shrinkage were greater for the BFS activated with lime, believed to result from the more refined porous structure in comparison with the mixture activated with gypsum plus lime. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: Biomaterials have been widely used in the field of regenerative medicine. Bovine pericardium tissue has been successfully used as a bioprosthetic material in manufacturing heart valves, but studies concerning the tissue are ongoing in order to improve its storage, preservation and transportation. This article provides an overview of the characteristics of bovine pericardium tissue chemically treated after the freeze-drying process. These characteristics are essential to evaluate the changes or damage to the tissue during the process. Methods: The mechanical properties of the tissue were analyzed by three different methods due to its anisotropic characteristics. The physical properties were analyzed by a colorimetric method, while the morphological properties were evaluated by scanning electron microscopy (SEM). Results: The freeze-dried bovine pericardium showed no significant change in its mechanical properties. There was no significant change in the elasticity of the tissue (p > 0.05) and no color change. In addition, SEM analysis showed that the freeze-dried samples did not suffer structural collapse. Conclusions: It was concluded that glutaraldehyde-treated bovine pericardium tissue showed no significant change in its properties after the freeze-drying process.
Resumo:
This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.
Resumo:
Heat transfer and entropy generation analysis of the thermally developing forced convection in a porous-saturated duct of rectangular cross-section, with walls maintained at a constant and uniform heat flux, is investigated based on the Brinkman flow model. The classical Galerkin method is used to obtain the fully developed velocity distribution. To solve the thermal energy equation, with the effects of viscous dissipation being included, the Extended Weighted Residuals Method (EWRM) is applied. The local (three dimensional) temperature field is solved by utilizing the Green’s function solution based on the EWRM where symbolic algebra is being used for convenience in presentation. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate, the aspect ratio, the Darcy number, the viscosity ratio, and the Brinkman number. With the velocity and temperature field being determined, the Second Law (of Thermodynamics) aspect of the problem is also investigated. Approximate closed form solutions are also presented for two limiting cases of MDa values. It is observed that decreasing the aspect ratio and MDa values increases the entropy generation rate.
Resumo:
The writers measured velocity, pressure and energy distributions, wavelengths, and wave amplitudes along undular jumps in a smooth rectangular channel 0.25 m wide. In each case the upstream flow was a fully developed shear flow. Analysis of the data shows that the jump has strong three-dimensional features and that the aspect ratio of the channel is an important parameter. Energy dissipation on the centerline is far from negligible and is largely constrained to the reach between the start of the lateral shock waves and the first wave crest of the jump, in which the boundary layer develops under a strong adverse pressure gradient. A Boussinesq-type solution of the free-surface profile, velocity, and energy and pressure distributions is developed and compared with the data. Limitations of the two-dimensional analysis are discussed.
Resumo:
The gamma-radiolysis of poly(tetrafluoroethylene-co-perfluoromethyl vinyl ether) (TFE/PMVE) was investigated using chemical and mechanical analyses. The polymer was found to form an insoluble network with a dose of gelation of 15.8 kGy. Tensile and glass transition temperature measurements indicated the predominance of crosslinking, with optimal elastomeric properties reached in the dose range of 120 to 200 kGy. Photoacoustic FTIR spectroscopy CPAS) showed the formation of new carboxylic acid end groups on irradiation. These new end groups were shown to decrease the thermal oxidative stability of the crosslinked network as determined by thermal gravimetric analysis. Electron spin resonance (ESR) studies of the polymer at 77 K indicated the presence of radical precursors. A G-value of 1.1 was determined for radical production at 77 K. Comparison of radical concentrations for a copolymer with a different mole ratio of PMVE, indicated that the PMVE units contribute to scission reactions. (C) 1998 Elsevier Science Ltd. All rights reserved.