913 resultados para luminescence spectroscopy
Resumo:
Making the switch: Compounds 1 and 2 are used as metabolic markers for NMR detection. When neuronal cells switch to a glycolytic state, an uneven distribution of (13) C in the N-acetyl group results, thus giving a mixture of the metabolites 1 and 2. It is therefore possible to monitor flux through different metabolic pathways, such as glycolysis, the tricarboxylic acid cycle, and the hexosamine biosynthetic pathway, using a single molecule.
Resumo:
Gliomas are routinely graded according to histopathological criteria established by the World Health Organization. Although this classification can be used to understand some of the variance in the clinical outcome of patients, there is still substantial heterogeneity within and between lesions of the same grade. This study evaluated image-guided tissue samples acquired from a large cohort of patients presenting with either new or recurrent gliomas of grades II-IV using ex vivo proton high-resolution magic angle spinning spectroscopy. The quantification of metabolite levels revealed several discrete profiles associated with primary glioma subtypes, as well as secondary subtypes that had undergone transformation to a higher grade at the time of recurrence. Statistical modeling further demonstrated that these metabolomic profiles could be differentially classified with respect to pathological grading and inter-grade conversions. Importantly, the myo-inositol to total choline index allowed for a separation of recurrent low-grade gliomas on different pathological trajectories, the heightened ratio of phosphocholine to glycerophosphocholine uniformly characterized several forms of glioblastoma multiforme, and the onco-metabolite D-2-hydroxyglutarate was shown to help distinguish secondary from primary grade IV glioma, as well as grade II and III from grade IV glioma. These data provide evidence that metabolite levels are of interest in the assessment of both intra-grade and intra-lesional malignancy. Such information could be used to enhance the diagnostic specificity of in vivo spectroscopy and to aid in the selection of the most appropriate therapy for individual patients.
Resumo:
Objectives: Magnetic resonance (MR) imaging and spectroscopy (MRS) allow the establishment of the anatomical evolution and neurochemical profiles of ischemic lesions. The aim of the present study was to identify markers of reversible and irreversible damage by comparing the effects of 10-mins middle cerebral artery occlusion (MCAO), mimicking a transient ischemic attack, with the effects of 30-mins MCAO, inducing a striatal lesion. Methods: ICR-CD1 mice were subjected to 10-mins (n = 11) or 30-mins (n = 9) endoluminal MCAO by filament technique at 0 h. The regional cerebral blood flow (CBF) was monitored in all animals by laser- Doppler flowmetry with a flexible probe fixed on the skull with < 20% of baseline CBF during ischemia and > 70% during reperfusion. All MR studies were carried out in a horizontal 14.1T magnet. Fast spin echo images with T2-weighted parameters were acquired to localize the volume of interest and evaluate the lesion size. Immediately after adjustment of field inhomogeneities, localized 1H MRS was applied to obtain the neurochemical profile from the striatum (6 to 8 microliters). Six animals (sham group) underwent nearly identical procedures without MCAO. Results: The 10-mins MCAO induced no MR- or histologically detectable lesion in most of the mice and a small lesion in some of them. We thus had two groups with the same duration of ischemia but a different outcome, which could be compared to sham-operated mice and more severe ischemic mice (30-mins MCAO). Lactate increase, a hallmark of ischemic insult, was only detected significantly after 30-mins MCAO, whereas at 3 h post ischemia, glutamine was increased in all ischemic mice independently of duration and outcome. In contrast, glutamate, and even more so, N-acetyl-aspartate, decreased only in those mice exhibiting visible lesions on T2-weighted images at 24 h. Conclusions: These results suggest that an increased glutamine/glutamate ratio is a sensitive marker indicating the presence of an excitotoxic insult. Glutamate and NAA, on the other hand, appear to predict permanent neuronal damage. In conclusion, as early as 3 h post ischemia, it is possible to identify early metabolic markers manifesting the presence of a mild ischemic insult as well as the lesion outcome at 24 h.
Resumo:
Recently, a number of cases of smuggling dissolved cocaine in wine bottles have been reported. The aim of the present study was to determine whether cocaine dissolved in wine can be detected by proton magnetic resonance spectroscopy ((1) H MRS) on a standard clinical MR scanner, in intact (i.e. unopened) wine bottles. (1) H MRS experiments were performed with a 3 Tesla clinical scanner on wine phantoms with or without cocaine contamination. The aromatic protons of cocaine displayed resonance peaks in the 7-8 ppm region of the spectrum, where no overlapping resonances of wine were present. Additional cocaine resonances were detected in the 2-3 ppm region of the spectrum, between the resonances of ethanol and other wine constituents. Detection of cocaine in wine (at 5 mM, i.e. ∼1.5 g/L) was feasible in a scan time of 1 min. We conclude that dissolved cocaine can be detected in intact wine bottles, on a standard clinical MR scanner. Thus, (1) H MRS is the technique of choice to examine this type of suspicious cargo, since it allows for a non-destructive and rapid content characterization. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
The neurochemical profile of the cortex develops in a region and time specific manner, which can be distorted by psychiatric and other neurological pathologies. Pre-clinical studies often involve experimental mouse models. In this study, we determined the neurochemical profile of C57BL/6 mice in a longitudinal study design to provide a reference frame for the normal developing mouse cortex. Using in vivo proton NMR spectroscopy at 14 T, we measured the concentrations of 18 metabolites in the anterior and posterior cortex on postnatal days (P) 10, 20, 30, 60 and 90. Cortical development was marked by alterations of highly concentrated metabolites, such as N-acetylaspartate, glutamate, taurine and creatine. Regional specificity was represented by early variations in the concentration of glutamine, aspartate and choline. In adult animals, regional concentration differences were found for N-acetylaspartate, creatine and myo-inositol. In this study, animals were exposed to recurrent isoflurane anaesthesia. Additional experiments showed that the latter was devoid of major effects on behaviour or cortical neurochemical profile. In conclusion, the high sensitivity and reproducibility of the measurements achieved at 14 T allowed us to identify developmental variations of cortical areas within the mouse cortex.
Resumo:
Measuring antibiotic-induced killing relies on time-consuming biological tests. The firefly luciferase gene (luc) was successfully used as a reporter gene to assess antibiotic efficacy rapidly in slow-growing Mycobacterium tuberculosis. We tested whether luc expression could also provide a rapid evaluation of bactericidal drugs in Streptococcus gordonii. The suicide vectors pFW5luc and a modified version of pJDC9 carrying a promoterless luc gene were used to construct transcriptional-fusion mutants. One mutant susceptible to penicillin-induced killing (LMI2) and three penicillin-tolerant derivatives (LMI103, LMI104, and LMI105) producing luciferase under independent streptococcal promoters were tested. The correlation between antibiotic-induced killing and luminescence was determined with mechanistically unrelated drugs. Chloramphenicol (20 times the MIC) inhibited bacterial growth. In parallel, luciferase stopped increasing and remained stable, as determined by luminescence and Western blots. Ciprofloxacin (200 times the MIC) rapidly killed 1.5 log10 CFU/ml in 2-4 hr. Luminescence decreased simultaneously by 10-fold. In contrast, penicillin (200 times the MIC) gave discordant results. Although killing was slow (< or = 0.5 log10 CFU/ml in 2 hr), luminescence dropped abruptly by 50-100-times in the same time. Inactivating penicillin with penicillinase restored luminescence, irrespective of viable counts. This was not due to altered luciferase expression or stability, suggesting some kind of post-translational modification. Luciferase shares homology with aminoacyl-tRNA synthetase and acyl-CoA ligase, which might be regulated by macromolecule synthesis and hence affected in penicillin-inhibited cells. Because of resemblance, luciferase might be down-regulated simultaneously. Luminescence cannot be universally used to predict antibiotic-induced killing. Thus, introducing reporter enzymes sharing mechanistic similarities with normal metabolic reactions might reveal other effects than those expected.
Resumo:
The lanthanide binuclear helicate [Eu(2)(L(C2(CO(2)H)))(3)] is coupled to avidin to yield a luminescent bioconjugate EuB1 (Q = 9.3%, tau((5)D(0)) = 2.17 ms). MALDI/TOF mass spectrometry confirms the covalent binding of the Eu chelate and UV-visible spectroscopy allows one to determine a luminophore/protein ratio equal to 3.2. Bio-affinity assays involving the recognition of a mucin-like protein expressed on human breast cancer MCF-7 cells by a biotinylated monoclonal antibody 5D10 to which EuB1 is attached via avidin-biotin coupling demonstrate that (i) avidin activity is little affected by the coupling reaction and (ii) detection limits obtained by time-resolved (TR) luminescence with EuB1 and a commercial Eu-avidin conjugate are one order of magnitude lower than those of an organic conjugate (FITC-streptavidin). In the second part of the paper, conditions for growing MCF-7 cells in 100-200 microm wide microchannels engraved in PDMS are established; we demonstrate that EuB1 can be applied as effectively on this lab-on-a-chip device for the detection of tumour-associated antigens as on MCF-7 cells grown in normal culture vials. In order to exploit the versatility of the ligand used for self-assembling [Ln(2)(L(C2(CO(2)H)))(3)] helicates, which sensitizes the luminescence of both Eu(III) and Tb(III) ions, a dual on-chip assay is proposed in which estrogen receptors (ERs) and human epidermal growth factor receptors (Her2/neu) can be simultaneously detected on human breast cancer tissue sections. The Ln helicates are coupled to two secondary antibodies: ERs are visualized by red-emitting EuB4 using goat anti-mouse IgG and Her2/neu receptors by green-emitting TbB5 using goat anti-rabbit IgG. The fact that the assay is more than 6 times faster and requires 5 times less reactants than conventional immunohistochemical assays provides essential advantages over conventional immunohistochemistry for future clinical biomarker detection.
Resumo:
In the last decade, evidence has emerged indicating that the growth of a vast majority of tumors including gliomas is sustained by a subpopulation of cancer cells with stem cell properties called cancer initiating cells. These cells are able to initiate and propagate tumors and constitute only a fraction of all tumor cells. In the present study, we showed that intracerebral injection of cultured glioma-initiating cells into nude mice produced fast growing tumors showing necrosis and gadolinium enhancement in MR images, whereas gliomas produced by injecting freshly purified glioma-initiating cells grew slowly and showed no necrosis and very little gadolinium enhancement. Using proton localized spectroscopy at 14.1 Tesla, decreasing trends of N-acetylaspartate, glutamate and glucose concentrations and an increasing trend of glycine concentration were observed near the injection site after injecting cultured glioma-initiating cells. In contrast to the spectra of tumors grown from fresh cells, those from cultured cells showed intense peaks of lipids, increased absolute concentrations of glycine and choline-containing compounds, and decreased concentrations of glutamine, taurine and total creatine, when compared with a contralateral non-tumor-bearing brain tissue. A decrease in concentrations of N-acetylaspartate and γ-aminobutyrate was found in both tumor phenotypes after solid tumor formation. Further investigation is needed to determine the cause of the dissimilarities between the tumors grown from cultured glioma-initiating cells and those from freshly purified glioma-initiating cells, both derived from human glioblastomas.
Resumo:
Raman spectroscopy has become an attractive tool for the analysis of pharmaceutical solid dosage forms. In the present study it is used to ensure the identity of tablets. The two main applications of this method are release of final products in quality control and detection of counterfeits. Twenty-five product families of tablets have been included in the spectral library and a non-linear classification method, the Support Vector Machines (SVMs), has been employed. Two calibrations have been developed in cascade: the first one identifies the product family while the second one specifies the formulation. A product family comprises different formulations that have the same active pharmaceutical ingredient (API) but in a different amount. Once the tablets have been classified by the SVM model, API peaks detection and correlation are applied in order to have a specific method for the identification and allow in the future to discriminate counterfeits from genuine products. This calibration strategy enables the identification of 25 product families without error and in the absence of prior information about the sample. Raman spectroscopy coupled with chemometrics is therefore a fast and accurate tool for the identification of pharmaceutical tablets.
Resumo:
Fluorescence cystoscopy enhances detection of early bladder cancer. Water used to inflate the bladder during the procedure rapidly contains urine, which may contain fluorochromes. This frequently degradesfluorescence images. Samples of bladder washout fluid (BWF) or urine were collected (15 subjects). We studiedtheir fluorescence properties and assessed changes induced by pH (4 to 9) and temperature (15°C to 41°C).A typical fluorescence spectrum of BWF features a main peak (excitation/emission: 320∕420 nm, FWHM =50∕100 nm) and a weaker (5% to 20% of main peak intensity), secondary peak (excitation/emission: 455∕525 nm, FWHM = 80∕50 nm). Interpatient fluctuations of fluorescence intensity are observed. Fluorescence intensity decreases when temperature increases (max 30%) or pH values vary (max 25%). Neither approach is compatible with clinical settings. Fluorescence lifetime measurements suggest that 4-pyridoxic acid/riboflavin is the most likely molecule responsible for urine's main/secondary fluorescence peak. Our measurements give an insight into the spectroscopy of the detrimental background fluorescence. This should be included in the optical design of fluorescence cystoscopes. We estimate that restricting the excitation range from 370-430 nm to 395-415 nm would reduce the BWF background by a factor 2.
Resumo:
After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc ) in excess of those in oxygen (CMRO2 ) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1-2 min of activation.
Resumo:
Raman spectroscopy has become a widespread technique for the analysis ofpharmaceutical solid forms. The application proposed here is the investigationof counterfeit medicines. This serious global issue requires quick and accurateidentification methods to fight against this phenomenon. Thanks to its chemicalselectivity, rapidity of analysis and potential of generating repeatable spectralprofiles, Raman spectroscopy presents distinct advantages for the analysis ofcounterfeits. Combined with chemometric tools, the technique enablesthe detection, the determination of chemical composition and the profiling ofmedicine counterfeits.
Resumo:
Measurement of the hepatic oxygenation index by near infrared spectroscopy is a suitable method to estimate the oxygenation and can be a non-invasive means to continuously monitor tissue perfusion and to detect early haemodynamic disturbances in critically ill children.
Resumo:
A series of InxAl1-xAs samples (0.51≪x≪0.55)coherently grown on InP was studied in order to measure the band-gap energy of the lattice matched composition. As the substrate is opaque to the relevant photon energies, a method is developed to calculate the optical absorption coefficient from the photoluminescence excitation spectra. The effect of strain on the band-gap energy has been taken into account. For x=0.532, at 14 K we have obtained Eg0=1549±6 meV
Resumo:
PDMS-based microfluidic devices combined with lanthanide-based immunocomplexes have been successfully tested for the multiplex detection of biomarkers on cancerous tissues, revealing an enhanced sensitivity compared to classical organic dyes.