958 resultados para luminescence Ir(III)-complexes cyclometallation azole-ligands
Resumo:
The reaction of the fulvalene titanium(III) hydride [{Ti(η5-C5H5)(μ-H)}2(μ-η5-η5-C10H8)] (1) with chlorine leads to [{Ti(η5-C5H5)(μ-Cl)}2(μ-η5-η5-C10H8)] (3) and [{Ti(η5-C5H5)Cl2}2(μ-η5-η5-C10H8)] (4). The reaction of 3 with azobenzene, in wet toluene, gives [{Ti(η5-C5H5)Cl}2(μ-O)(μ-η5-η5-C10H8)] (5) and 1,2-diphenyl hydrazine. The alkylation of 4 and the analogous zirconium complex [{Zr(η5-C5H55)Cl2}2(μ-η5-η5-C10H8)] (2) with LiCH2SiMe3 or LiCH3 permits isolation of the tetraalkyl derivatives [{M(η5-C5H5)(CH2SiMe3)2}2(μ-η5-η5-C10H8)] (M Ti (6); Zr (8)) and [{Ti(η5-C5H5)(CH3)2}2(μ-η5-η5C10H8)] (7). All the new fulvalene compounds were characterized by IR, and 1H and 13C NMR spectroscope, and mass spectra and 5 by X-ray diffraction. The structure of 5 is very similar to that of the comparable TiIV compound [{Ti(η5-C5H5)2Cl}2(μ-O)] except for the smaller TiOTi angle (159.4° against 173.81°) and a significant deviation from linearity.
Resumo:
A series of bis-triazinylphenanthroline ligands (BTPhens) was synthesized by modifying the triazine substituents. It was found that varying these substituents altered the solubilities of the ligands in a number of non-polar solvents. Thus C5-BTPhen showed significantly higher solubility in octanol than C1-BTPhen. The high solubility of C5-BTPhen and its complexes was exploited to facilitate the NMR titration experiments. These experiments shown that the dominant species in solution were the 1:2 complexes [Ln(III)(BTPhen)2], even at high Ln concentrations, and that the relative stability of the 2:1 to 1:1 BTPhen-Ln complexes varied with different lanthanides. C5-BTPhen therefore shows considerable promise for a once-through selective actinide separation process.
Resumo:
The reaction of cis-[RuCl2(dmso)(4)] with [6-(2-pyridinyl)-5,6-dihydrobenzimidazo[1,2-c] quinazoline] (L) afforded in pure form a blue ruthenium(II) complex, [Ru(L-1)(2)] (1), where the original L changed to [2-(1H-benzoimidazol-2-yl)-phenyl]-pyridin-2-ylmethylene-amine (HL1). Treatment of RuCl3 center dot 3H(2)O with L in dry tetrahydrofuran in inert atmosphere led to a green ruthenium(II) complex, trans-[RuCl2(L-2)(2)] (2), where L was oxidized in situ to the neutral species 6-pyridin-yl-benzo[4,5]imidazo[1,2-c] quinazoline (L-2). Complex 2 was also obtained from the reaction of RuCl3 center dot 3H(2)O with L-2 in dry ethanol. Complexes 1 and 2 have been characterized by physico-chemical and spectroscopic tools, and 1 has been structurally characterized by single-crystal X-ray crystallography. The electrochemical behavior of the complexes shows the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of these complexes with calf thymus DNA by using absorption and emission spectral studies allowed determination of the binding constant K-b and the linear Stern-Volmer quenching constant K-SV
Resumo:
This work describes syntheses and electrochemical, spectroscopic, and bonding properties in a new series of dinuclear ruthenium(II) complexes bridged by polyaromatic (biphenyl, fluorene, phenanthrene, and pyrene) alkynyl ligands. Longitudinal expansion of the π-conjugated polyaromatic core of the bridging ligands caused a reduced potential difference between the anodic steps and reinforced their bridge-localized nature, as evidenced by UV/vis/near-IR and IR spectroelectrochemical data combined with DFT and TDDFT calculations. Importantly, the intricate multiple IR ν(CC) absorption bands for the singly oxidized states imply a thermal population of a range of conformers (rotamers) with distinct electronic character. This behavior was demonstrated with more accurate DFT calculations of selected nontruncated 1e− oxidized complexes in three different conformations. The combined experimental and theoretical data reveal that thermally populated rotamers featuring various mutual orientations of the ligated metal termini and the bridging diethynyl polyaromatic moieties have a significant impact on the electronic absorption and ν(CC) wavenumbers of the singly oxidized systems.
Resumo:
A series of ruthenium(II) complexes [{RuCl(CO)(PMe3)3(–CHvCH–)}nX], 1a–1c (1a: n = 3, X = 3,3’’- dimethyl-2,2’:3’,2’’-terthiophene; 1b: n = 2, X = 2,2’-bithiophene; 1c: n = 2, X = 2,3-bis(3-methylthiophen- 2-yl)benzothiophene) and [{Cp*(dppe)2Ru(–CuC–)}3X], 1d (X = 3,3’’-dimethyl-2,2’:3’,2’’- terthiophene), were prepared and characterized by 1H, 13C and 31P NMR. Their redox, spectroscopic and bonding properties were studied with a range of spectro-electrochemical methods in combination with density functional theory calculations. The first two anodic steps observed for 1a and 1d are largely localized on the lateral frameworks of the molecular triangle, the direct conjugation between them being precluded due to the photostable open form of the dithienyl ethene moiety. The third anodic step is then mainly localized on the centerpiece of the triangular structure, affecting both bithiophene laterals. The experimental IR and UV-vis-NIR spectroelectrochemical data and, largely, also DFT calculations account for this explanation, being further supported by direct comparison with the anodic behavior of reference diruthenium complexes 1b and 1c.
Resumo:
Four new diruthenium complexes [{(η5-C5Me5)Ru(dppe)}2(μ-CuC–L–CuC)] featuring different bridging isomeric diethynyl benzodithiophenes viz. L = benzo[1,2-b;4,5-b’]dithiophene (complex 1), benzo[2,1-b;4,5b’]dithiophene (complex 2), benzo[1,2-b;3,4-b’]dithiophene (complex 3) and benzo[1,2-b;4,3-b’]-dithiophene (complex 4), were synthesized and characterized by molecular spectroscopic and crystallographicmethods. The subtle changes in the molecular structure introduced by the diethynyl benzodithiophene isomers have a notable impact on the stability of the oxidized complexes and their absorption characteristics in the visible-NIR and IR spectral domains. Electronic properties of stable oxidized complexes[1]n+ and [4]n+ (n = 1, 2) were investigated by cyclic voltammetry, UV-vis-NIR and IR spectroelectrochemistry as well as DFT and TDDFT calculations. The results document the largely bridgelocalized character of the oxidation of parents 1 and 4. Cations [2]+ and [3]+ are too unstable at ambient temperature to afford their unambiguous characterization. UV-vis-NIR absorption spectral data combined with TDDFT calculations (BLYP35) reveal that the broad electronic absorption of [1]+ and [4]+ in the NIR region has a mixed intraligand π–π* and MLCT character, with similar contribution from their spin-delocalized trans and cis conformers. A spin-localized (mixed-valence) rotamer was only observed for [1]+ at ambient temperature as a minor component on the time scale of IR spectroscopy.
Resumo:
The anionic complexes [Cu(L(1-))(3)](1-), L(-) = dopasemiquinone or L-dopasemiqui none, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the vCC + vCO stretching mode at ca. 1384 cm(-1). The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g= 2.0005 and g = 2.0923, and for Cu(II) with g = 2.008 and g = 2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The synthesis, structural investigation, and photophysical properties of the complex [Tb(TTA)(2)(NO(3)) (TPPO)(2)] are reported. Unlike the analog tris-diketonate complex [Tb(TTA)(3)(TPPO)(2)], the new complex presents abnormally high luminescence intensity centered on the terbium ion. Our results clearly suggest a higher energy transfer efficiency from the TEA antenna ligand to the Tb(III) ion in the bis-diketonate complex compared with that in the tris-diketonate complex. A mechanism involving the increasing of triplet state energy when one TTA ligand is replaced by the NO(3)(-) group in the first coordination sphere is suggested and experimentally investigated to explain the anomalous luminescence properties of the new complex [Tb(TTA)(2)(NO(3))(TPPO)(2)]. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work, the use of proton nuclear magnetic resonance, (1)H NMR, was fully described as a powerful tool to follow a photoreaction and to determine accurate quantum yields, so called true quantum yields (Phi(true)), when a reactant and photoproduct absorption overlap. For this, Phi(true) for the trans-cis photoisomerization process were determined for rhenium(I) polypyridyl complexes, fac-[Re(CO)(3)(NN)(trans-L)](+) (NN = 1,10-phenanthroline, phen, or 4,7-diphenyl-1,10-phenanthroline, ph(2)phen, and L = 1,2-bis(4-pyridyl) ethylene, bpe, or 4-styrylpyridine, stpy). The true values determined at 365 nm irradiation (e. g. Phi(NMR) = 0.80 for fac-[Re(CO)(3)(phen)(trans-bpe)](+)) were much higher than those determined by absorption spectral changes (Phi(UV-Vis) = 0.39 for fac-[Re(CO)(3)(phen)(trans-bpe)](+)). Phi(NMR) are more accurate in these cases due to the distinct proton signals of trans and cis-isomers, which allow the actual determination of each component concentration under given irradiation time. Nevertheless when the photoproduct or reactant contribution at the probe wavelength is negligible, one can determine Phi(true) by regular absorption spectral changes. For instance, Phi(313) nm for free ligand photoisomerization determined both by absorption and (1)H NMR variation are equal within the experimental error (bpe: Phi(UV-Vis) = 0.27, Phi(NMR) = 0.26; stpy: Phi(UV-Vis) = 0.49, Phi(NMR) = 0.49). Moreover, (1)H NMR data combined with electronic spectra allowed molar absorptivity determination of difficult to isolate cis-complexes. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Four new diorganotin(IV) complexes have been prepared from R(2)SnCl(2) (R = Me, Ph) with the ligands 5-hydroxy-3-metyl-5-phenyl-1-(S-benzildithiocarbazate)-pyrazoline (H(2)L(1)) and 5-hydroxy-3-methyl-5-phenyl-1-(2-thiophenecarboxylic)-pyrazoline (H(2)L(2)). The complexes were characterized by elemental analysis, IR. (1)H (13)C, (119)Sn NMR and Mossbauer spectroscopes The complexes [Me(2)SnL(1)], [Ph(2)SnL(1)] and [Me(2)SnL(2)] were also studied by single crystal X-ray diffraction and the results showed that the Sn(IV) central atom of the complexes adopts a distorted trigonal bipyramidal (TBP) geometry with the N atom of the ONX-tridentate (X = O and S) ligand and two organic groups occupying equatorial sites. The C-Sn-C angles for [Me(2)Sn(L(1))] and [Ph(2)Sn(L(1))] were calculated using a correlation between (119)Sn Mossbauer and X-ray crystallographic data based on the point-charge model Theoretical calculations were performed with the B3LYP density functional employing 3-21G(*) and DZVP all electron basis sets showing good agreement with experimental findings General and Sn(IV) specific IR harmonic frequency scale factors for both basis sets were obtained from comparison with selected experimental frequencies (C) 2010 Elsevier B V All rights reserved
Resumo:
Nanoparticles of octakis[3-(3-amino-1,2,4-triazole)propyl]octasilsesquioxane (ATZ-SSQ) were tested as ligands, for transition-metal ions in aqueous solution with a special attention to sorption isotherms, ligand-metal interaction, and determination of metal ions in natural waters. The adsorption potential of the material ATZ-SSQ was compared with related [3(3-amino-1,2,4-triazole)propyl]silica gel (ATZ-SG). The adsorption was performed using a batchwise process and both organofunctionalized surfaces showed the ability to adsorb the metal ions from aqueous solution. The Langmuir model was used to simulate the sorption isotherms. The results suggest that the sorption of these metals on ATZ-SSQ and ATZ-SG occurs mainly by surface complexation. The equilibrium condition is reached at time lower than 3 min for ATZ-SSQ, while for ATZ-SG is only reached at time of 25 min. The maximum metal ion uptake values for ATZ-SSQ were higher than the corresponding values achieved with the ATZ-SG. In order to obtain more information on the ligand-metal interaction of the complexes on the surface of the ATZ-SSQ nanomaterial, ESR study with various degrees of copper loadings was carried out. The ATZ-SSQ was tested for the determination (in flow using a column technique) of the metal ions present in natural waters. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this present work, barium ion was reacted with different ligands which are 5,7-dibromo, 5,7-dichloro, 7-iodo and 5-chloro-7-iodo-8-hydroxyquinoline, in acetone/ammonium hydroxide medium under constant stirring and the obtained compounds were as follows: (I) Ba[(C9H4ONBr2)(2)].1.5H(2)O; (II) Ba[(C9H4ONCl2)(OH)]. 1H(2)O; (III) Ba[(C9H5ONI)(2)]. 1H(2)O and (IV) Ba[(C9H4ONICl)(2)]. 5H(2)O, respectively. The compounds were characterized by elemental analysis, infrared absorption spectrum (IR), inductively coupled plasma spectrometry (ICP), simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimeter (DSC).The final residue of the thermal decomposition was characterized as orthorhombic BaBr2 from (I); the intermediate residue, as a mixture of orthorhombic BaCO3 and BaCl2 and cubic BaO and the final residue, as a mixture of cubic and tetragonal BaO and orthorhombic BaCl2 (II); the intermediate residue, as orthorhombic BaCO3 and as a final residue, a mixture of cubic and tetragonal BaO from (III); and the intermediate residue, as a mixture of orthorhombic BaCO3 and BaCl2 and as a final residue, a mixture of cubic and tetragonal BaO and orthorhombic BaCl2 from (IV).
Resumo:
This work reports on the photoluminescent properties of the complex diequatris(thenoyltrifluoroacetonate) europium(III), which was adsorbed or supported on tubes of modified surface silica matrix. The luminescence data and the experimental intensity parameter results evidence the existence of high interactions between the complex [Eu(tta)(3)(H2O)(2)] and the modified surface matrix. The anchored complex on macroporous silica shows higher intensity parameter values suggesting that the Eu-0 bond becomes more covalent than the adsorbed one. Therefore, the hypersensitive character of the D-5(0) --> F-7(2) transition increases evidencing a high contribution of the dynamic coupling mechanism possibly due to highly polarizable chemical environments occupied by europium(III) ion. The lifetimes of the complex on silica matrices were measured. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The carbonyl complexes [WCl(CO)(3)(bipy) (HgCl)] (1), [Fe(CO)(4)(HgCl)(2)] (2) and W(CO)(6)] (3) were immobilized on a silica gel surface organofunctionalized with piperazine groups. The products obtained were studied by IR spectroscopy and small angle X-ray scattering (SAXS) techniques. The IR data show that the immobilization of heterobimetallic compounds 1 and 2, on the functionalized surface, occurred through the mercury atom, while for 3 the displacement of one CO group by the nitrogen of a piperazine molecule was observed. The data obtained from SAXS indicate that particles have a uniform size and reveal suitable modifications on the functionalized surface after immobilization of metal carbonyl complexes. The average intermolecular distance (l(ij)) for piperazine ligands on support is 8.7 Angstrom, for the metal carbonyl complex 1 it is 18.8 Angstrom, for complex 2 it is 16.2 Angstrom and for complex 3 it is 15.3 Angstrom. Copyright (C) 1996 Elsevier B.V. Ltd