847 resultados para lithium-ion batteries


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of compounds, La2/3 - xLi3xMoO4, were first prepared. Their structures are tetragonal scheelites with the cationic defects. The cell parameters a, c and values of c/a decrease with the increasing of the substitution amount (3x) of lithium ion. Cationic vacancies are getting more as Li+ concentration is lower. The diffusion of lithium ion is predominant. The concentration of charge carriers increases with increasing the substitution amount (3x) of lithium ion, meanwhile, the concentration of cationic vacancies decreases. The conductivity approaches the best when the substitution amount (3x) of lithium ion is about 0.3. The conductivity of La0.567Li0.3MoO4 is 6.5 x 10(-6) S . cm(-1) at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Partially N-methylated polyaniline (NMPAn) is used instead of polyaniline (PAn) to make a composite with organodisulfides for cathodes of lithium secondary batteries. NMPAn displays a better electrocatalytic effect on the redox processes of organodisulfides than PAn. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

为更好地使用锂离子电池组,更精确地估算电池的荷电状态(SOC),对锂离子电池组合前后进行了常温4.0 A充放电、常温7.5 A放电、-20℃下4.0 A放电以及55℃下4.0 A放电等实验测试。实验结果显示:锂离子电池成组后的充放电特性有所下降,电池组总容量下降为单体电池的90%左右,SOC偏低,工作电压的下降速率在放电末期急剧上升,可达平台区的50倍。对电池组的一致性进行了分析,得出锂离子电池成组时应充分考虑单体电池的一致性;在估算SOC时,采用电池组参数和单体电池参数相结合的方式。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A wearable WIMU (Wireless Inertial Measurement Unit) [1] system for sports applications based on Tyndall's 25mm mote technology [2] has been developed to identify tennis performance determining factors, giving coaches & players improved feedback [3, 4]. Multiple WIMUs transmit player motion data to a PC/laptop via a receiver unit. Internally the WIMUs consist of: an IMU layer with MEMS based sensors; a microcontroller/transceiver layer; and an interconnect layer with supplemental 70g accelerometers and a lithium-ion battery. Packaging consists of a robust ABS plastic case with internal padding, a power switch, battery charging port and status LED with Velcro-elastic straps that are used to attach the device to the player. This offers protection from impact, sweat, and movement of sensors which could cause degradation in device performance. In addition, an important requirement for this device is that it needs to be lightweight and comfortable to wear. Calibration ensures that misalignment of the accelerometer and magnetometer axes are accounted for, allowing more accurate measurements to be made.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scanning probe microscopy methods have been used to electrodeposit and cycle micron-scale Li anodes deposited electrochemically under nanofabricated Au current collectors. An average Li volume of 5 x 10(8) nm(3) was deposited and cycled with 100% coulombic efficiency for similar to 160 cycles. Integrated charge/discharge values agree with before/after topography, as well as in situ dilatometry, suggesting this is a reliable method to study solid-state electrochemical processes. In this work we illustrate the possibility to deposit highly cyclable nanometer thick Li electrodes by mature SPM and nanofab techniques which can pave the way for inexpensive nanoscale battery arrays. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are rapidly gaining popularity as a means of de-carbonization in the transport sector in tackling sustainable energy supply and environment pollution problems. To build a proper battery model is essential in predicting battery behaviour under various operating conditions for avoiding unsafe battery operations and developing proper controlling algorithms and maintenance strategies. This paper presents a comprehensive review of battery modelling methods. In particular, the mechanism and characteristics of Li-ion batteries are presented, and different modelling methods are discussed. Considering that equivalent electric circuit models (EECMs) are the most widely used, a detailed analysis of the modelling procedure is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Li-ion batteries have been widely used in the EVs, and the battery thermal management is a key but challenging part of the battery management system. For EV batteries, only the battery surface temperature can be measured in real-time. However, it is the battery internal temperature that directly affects the battery performance, and large temperature difference may exist between surface and internal temperatures, especially in high power demand applications. In this paper, an online battery internal temperature estimation method is proposed based on a novel simplified thermoelectric model. The battery thermal behaviour is first described by a simplified thermal model, and battery electrical behaviour by an electric model. Then, these two models are interrelated to capture the interactions between battery thermal and electrical behaviours, thus offer a comprehensive description of the battery behaviour that is useful for battery management. Finally, based on the developed model, the battery internal temperature is estimated using an extended Kalman filter. The experimental results confirm the efficacy of the proposed method, and it can be used for online internal temperature estimation which is a key indicator for better real-time battery thermal management.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The results presented in this thesis have been achieved under the Ph.D. project entitled “Nonaqueous Sol-Gel routes to doped metal oxide nanoparticles: Synthesis, characterization, assembly and properties”. The purpose of this study is the investigation of metal oxide nanostructures doped with metals of a diverse nature, leading to different type of applications. The easier control over the reaction kinetics in solvothermal routes, compared to aqueous methods, allows to better match the reactivity between metal oxide precursors, paving the way to a facile and low temperature production of doped oxides. In this manuscript diverse examples of the exploitation of the “Benzyl Alcohol Route” are discussed. Such a powerful pathway was utilized for the synthesis of transition metal doped zirconia, hafnia and various perovskites, and the study of their magnetic properties, as well as the synthesis of rare earth doped zirconium oxide. A further extension, proving the solidity of the synthetic method, is shown for the preparation of Li4Ti5O12 nanocrystals carrying excellent electrochemical properties for lithium-ion battery applications. Finally, the effect of doping and other reaction parameters on the assembly of the nanocrystals is discussed. These studies were carried out principally at the University of Aveiro, as well as at the University of Montpellier II and at the Seoul National University due to complementary available expertises and equipments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin films of MnO(2) nanoparticles were grown using the layer-by-layer method with poly (diallyldimetylammonium) as the intercalated layer. The film growth was followed by UV-vis, electrochemical quartz crystal microbalance (EQCM), and atomic force microscopy. Linear growth due to electrostatic immobilization of layers was observed up to 30 bilayers, but electrical connectivity was maintained only for 12 MnO(2)/PPDA bilayers. The electrochemical characterization of this film in 1-butyl-2,3-dimethyl-imidazolium (BMMI) bis(trifluoromethanesulfonyl)imide (TFSI) (BMMITFSI) with and without addition of a lithium salt indicated a higher electrochemical response of the nanostructured electrode in the lithium-containing electrolyte. On the basis of EQCM experiments, it was possible to confirm that the charge compensation process is achieved mainly by the TFSI anion at short times (<2 s) and by BMMI and lithium cations at longer times. The fact that large ions like TFSI and BMMI participate in the electroneutrality is attributed to the redox reaction that occurs at the superficial sites and to the high concentration of these species compared to that of lithium cations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Imidazolium types of ionic liquids were immobilized by tethering it to acrylate backbone. These imidazolium salt containing acrylate monomers were polymerize at 70oC by free radical polymerization to give polymers poly(AcIm-n) with n being the side chain lenght. The chemical structure of the polymer electrolytes obtained by the described synthetic routes was investigated by NMR-spectroscopy. The polymers were doped with various amounts of H3PO4 and LiN(SO2CF3)2, to obtain poly(AcIm-n) x H3PO4 and poly(AcIm-2-Li) x LiN(SO2CF3)2. The TG curves show that the polymer electrolytes are thermally stable up to about 200◦C. DSC results indicates the softening effect of the length of the spacers (n) as well as phosphoric acid. The proton conductivity of the samples increase with x and reaches to 10-2 Scm-1 at 120oC for both poly(AcIm-2)2H3PO4 and poly(AcIm-6)2H3PO4. It was observed that the lithium ion conductivity of the poly(AcIm-2-Li) x LiN(SO2CF3)2 increases with blends (x) up to certain composition and then leveled off independently from blend content. The conductivity reaches to about 10-5 S cm-1 at 30oC and 10-3 at 100oC for poly(AcIm-2-Li) x LiN(SO2CF3)2 where x is 10. The phosphate and phosphoric acid functionality in the resulting polymers, poly(AcIm-n) x H3PO4, undergoes condensation leading to the formation of cross-linked materials at elevated temperature which may improve the mechanical properties to be used as membrane materials in fuel cells. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to obtain information about hydrogen bonding in solids. The low Tg enhances molecular mobility and this leads to better resolved resonances in both the backbone region and side chain region. The mobile and immobile protons can be distinguished by comparing 1H MAS and 1H-DQF NMR spectra. The interaction of the protons which may contribute to the conductivity is observed from the 2D double quantum correlation (DQC) spectra.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, rechargeable Li-ion batteries play an important role in portable consumer devices. Formulation of such batteries is improvable by researching new cathodic materials that present higher performances of cyclability and negligible efficiency loss over cycles. Goal of this work was to investigate a new cathodic material, copper nitroprusside, which presents a porous 3D framework. Synthesis was carried out by a low-cost and scalable co-precipitation method. Subsequently, the product was characterized by means of different techniques, such as TGA, XRF, CHN elemental analysis, XRD, Mössbauer spectroscopy and cyclic voltammetry. Electrochemical tests were finally performed both in coin cells and by using in situ cells: on one hand, coin cells allowed different formulations to be easily tested, on the other operando cycling led a deeper insight to insertion process and both chemical and physical changes. Results of several tests highlighted a non-reversible electrochemical behavior of the material and a rapid capacity fading over time. Moreover, operando techniques report that amorphisation occurs during the discharge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The new crystalline compound, Li2PO2N, was synthesized using high temperature solid state methods starting with a stoichiometric mixture of Li2O, P2O5, and P3N5. Its crystal structure was determined ab initio from powder X-ray diffraction. The compound crystallizes in the orthorhombic space group Cmc2(1) (# 36) with lattice constants a = 9.0692(4) angstrom, b = 53999(2) angstrom, and c = 4.6856(2) angstrom. The crystal structure of SD-Li2PO2N consists of parallel arrangements of anionic chains formed of corner sharing (PO2N2) tetrahedra. The chains are held together by Li+ cations. The structure of the synthesized material is similar to that predicted by Du and Holzwarth on the basis of first principles calculations (Phys. Rev. B 81,184106 (2010)). The compound is chemically and structurally stable in air up to 600 degrees C and in vacuum up to 1050 degrees C. The Arrhenius activation energy of SD-Li2PO2N in pressed pellet form was determined from electrochemical impedance spectroscopy measurements to be 0.6 eV, comparable to that of the glassy electrolyte LiPON developed at Oak Ridge National Laboratory. The minimum activation energies for Li ion vacancy and interstitial migrations are computed to be 0.4 eV and 0.8 eV, respectively. First principles calculations estimate the band gap of SD-Li2PO2N to be larger than 6 eV. (C) 2013 Elsevier B.V. All rights reserved.