962 resultados para layer-order-orientation
Resumo:
Influence of cutting instruments and The aim of this study was to analyze the hybrid layer in noncarious dentin prepared by different cutting instruments and restored with composite resin. The cavities were randomly prepared in 40 specimens using a high-speed diamond bur (KG Sorensen 1013) and an ultrasonic tip (CVDentus C22). The cavities were restored with composite resin by varying the adhesive system between the Adper™ Single Bond (2 x 1 system, primer+adhesive) and the Prompt L-Pop™ (3 x 1 system, self-etching). The restorations were hemisected longitudinally and analyzed in the SEM (Scanning electron microscopy) in order to evaluate the hybrid layer and resinous tags characteristics, using scores ranging from 1 to 6. The Pearson test revealed a high correlation coefficient and good significance levels for both intra- and inter-raters values (r=0.90). The data were statistically analyzed using the Mann-Whitney test (P≤0.05). A larger proportion of regular hybrid layers with numerous tags were observed in the dentin prepared using the high-speed diamond burs and restored with a 2 × 1 adhesive system. Alternatively, the 3 × 1 adhesive system promoted the generation of a thin hybrid layer with few tags. After preparation using an ultrasonic tip revealed few or no tags after the preparation and 2 × 1 or 3 × 1 adhesive system application. The high-speed diamond burs produced a dentin surface that was more favorable to restorative material adhesion than the ultrasonic tips, regardless of the adhesive system used.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require realtime video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.
Resumo:
In this study, biomembrane of natural latex was utilized to replace a section of the stomach wall of New Zealand rabbits, adult and non-castrated males (n=12), in order to evaluate the tissue repair process in regards to its biocompatility, scar formation ability and possible complications. The animals were euthanized at fifteen, 30 and 60 days post operation, by use of sodium thiopental (200mg kg-1), followed by macroscopic and histopathological analysis of the implant interface with the native tissue. Macroscopically, at fifteen, 30, and 60 days post operation adherence was observed in the serosal wall. At 60 days post operation, the biomembrane is not in the stomach. Under light microscopy, at fifteen and 30 days, discontinuity of muscle layer and mucosa layer, and presence of polimorfonuclear population of inflammatory cells was observed. New vessels and muscle fibers were observed. At 60 days, the mucosa and muscle layers were complete reconstituted. The implants were biocompatible and had provided the mainframe for orientation and development of the tissue layers through repairing processes, thus reestablishing the organ structure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Optical memories with long-term stability at high temperatures have long been pursued in azopolymers with photoinduced birefringence. In this study, we show that the residual birefringence in layer-by-layer (LbL) films made with poly[1-[4-(3-carboxy-4 hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) alternated with poly(allylamine hydrochloride) (PAH) can be tuned by varying the extent of electrostatic interactions with film fabrication at different pHs for PAH. The dynamics of both writing and relaxation processes could be explained with a two-stage mechanism involving the orientation of the chromophores per se and the chain movement. Upon calculating the activation energies for these processes, we demonstrate semiquantitatively that reduced electrostatic interactions in films prepared at higher pH, for which PAH is less charged, are responsible for the longer stability at high temperatures. This is attributed to orientation of PAZO chromophores via cooperative aggregation, where the presence of counterions hindered relaxation.
Resumo:
Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.
Resumo:
Azobenzene molecules and their derivatives have been widely investigated for their potential applications in optical and electrooptical devices. We have prepared a new guest-host system from natural rubber (NR) impregnated with azobenzene derivative Sudan Red B (SRB). The effects of stretching and immersion time on photoinduced orientation were investigated by birefringence signal measurements. We have found that the molecular orientation increase when the samples are stretched and decrease with the increase of immersion time. The first behavior was explained by using the random coil model and the latter was attributed to increase of the aggregation of SRB into NR matrix. (C) 2012 Published by Elsevier B.V.
Resumo:
In the field of organic thin films, manipulation at the nanoscale can be obtained by immobilization of different materials on platforms designed to enhance a specific property via the layer-by-layer technique. In this paper we describe the fabrication of nanostructured films containing cobalt tetrasulfonated phthalocyanine (CoTsPc) obtained through the layer-by-layer architecture and assembled with linear poly(allylamine hydrochloride) (PAH) and poly(amidoamine) dendrimer (PAMAM) polyelectrolytes. Film growth was monitored by UV-vis spectroscopy following the Q band of CoTsPc and revealed a linear growth for both systems. Fourier transform infrared (FTIR) spectroscopy showed that the driving force keeping the structure of the films was achieved upon interactions of CoTsPc sulfonic groups with protonated amine groups present in the positive polyelectrolyte. A comprehensive SPR investigation on film growth reproduced the deposition process dynamically and provided an estimation of the thicknesses of the layers. Both FTIR and SPR techniques suggested a preferential orientation of the Pc ring parallel to the substrate. The electrical conductivity of the PAH films deposited on interdigitated electrodes was found to be very sensitive to water vapor. These results point to the development of a phthalocyanine-based humidity sensor obtained from a simple thin film deposition technique, whose ability to tailor molecular organization was crucial to achieve high sensitivity.
Resumo:
This article analyzes the study of the relationship among knowledge management, the company's market orientation, innovativeness and organizational outcomes. The survey was conducted based on a survey held with executives from 241 companies in Brazil. The evidence found indicates that knowledge management directly contributes to market orientation, but it requires a clearly defined strategic direction to achieve results and innovativeness. It was also concluded that knowledge, as a resource, leverages other resources of the company, while it requires a direction in relation to the organizational goals in order to be effective.
Resumo:
This thesis deals with two important research aspects concerning radio frequency (RF) microresonators and switches. First, a new approach for compact modeling and simulation of these devices is presented. Then, a combined process flow for their simultaneous fabrication on a SOI substrate is proposed. Compact models for microresonators and switches are extracted by applying mathematical model order reduction (MOR) to the devices finite element (FE) description in ANSYS c° . The behaviour of these devices includes forms of nonlinearities. However, an approximation in the creation of the FE model is introduced, which enables the use of linear model order reduction. Microresonators are modeled with the introduction of transducer elements, which allow for direct coupling of the electrical and mechanical domain. The coupled system element matrices are linearized around an operating point and reduced. The resulting macromodel is valid for small signal analysis around the bias point, such as harmonic pre-stressed analysis. This is extremely useful for characterizing the frequency response of resonators. Compact modelling of switches preserves the nonlinearity of the device behaviour. Nonlinear reduced order models are obtained by reducing the number of nonlinearities in the system and handling them as input to the system. In this way, the system can be reduced using linear MOR techniques and nonlinearities are introduced directly in the reduced order model. The reduction of the number of system nonlinearities implies the approximation of all distributed forces in the model with lumped forces. Both for microresonators and switches, a procedure for matrices extraction has been developed so that reduced order models include the effects of electrical and mechanical pre-stress. The extraction process is fast and can be done automatically from ANSYS binary files. The method has been applied for the simulation of several devices both at devices and circuit level. Simulation results have been compared with full model simulations, and, when available, experimental data. Reduced order models have proven to conserve the accuracy of finite element method and to give a good description of the overall device behaviour, despite the introduced approximations. In addition, simulation is very fast, both at device and circuit level. A combined process-flow for the integrated fabrication of microresonators and switches has been defined. For this purpose, two processes that are optimized for the independent fabrication of these devices are merged. The major advantage of this process is the possibility to create on-chip circuit blocks that include both microresonators and switches. An application is, for example, aswitched filter bank for wireless transceiver. The process for microresonators fabrication is characterized by the use of silicon on insulator (SOI) wafers and on a deep reactive ion etching (DRIE) step for the creation of the vibrating structures in single-crystal silicon and the use of a sacrificial oxide layer for the definition of resonator to electrode distance. The fabrication of switches is characterized by the use of two different conductive layers for the definition of the actuation electrodes and by the use of a photoresist as a sacrificial layer for the creation of the suspended structure. Both processes have a gold electroplating step, for the creation of the resonators electrodes, transmission lines and suspended structures. The combined process flow is designed such that it conserves the basic properties of the original processes. Neither the performance of the resonators nor the performance of the switches results affected by the simultaneous fabrication. Moreover, common fabrication steps are shared, which allows for cheaper and faster fabrication.
Resumo:
This Doctoral Thesis focuses on the study of individual behaviours as a result of organizational affiliation. The objective is to assess the Entrepreneurial Orientation of individuals proving the existence of a set of antecedents to that measure returning a structural model of its micro-foundation. Relying on the developed measurement model, I address the issue whether some Entrepreneurs experience different behaviours as a result of their academic affiliation, comparing a sample of ‘Academic Entrepreneurs’ to a control sample of ‘Private Entrepreneurs’ affiliated to a matched sample of Academic Spin-offs and Private Start-ups. Building on the Theory of the Planned Behaviour, proposed by Ajzen (1991), I present a model of causal antecedents of Entrepreneurial Orientation on constructs extensively used and validated, both from a theoretical and empirical perspective, in sociological and psychological studies. I focus my investigation on five major domains: (a) Situationally Specific Motivation, (b) Personal Traits and Characteristics, (c) Individual Skills, (d) Perception of the Business Environment and (e) Entrepreneurial Orientation Related Dimensions. I rely on a sample of 200 Entrepreneurs, affiliated to a matched sample of 72 Academic Spin-offs and Private Start-ups. Firms are matched by Industry, Year of Establishment and Localization and they are all located in the Emilia Romagna region, in northern Italy. I’ve gathered data by face to face interviews and used a Structural Equation Modeling technique (Lisrel 8.80, Joreskog, K., & Sorbom, D. 2006) to perform the empirical analysis. The results show that Entrepreneurial Orientation is a multi-dimensional micro-founded construct which can be better represented by a Second-Order Model. The t-tests on the latent means reveal that the Academic Entrepreneurs differ in terms of: Risk taking, Passion, Procedural and Organizational Skills, Perception of the Government, Context and University Supports. The Structural models also reveal that the main differences between the two groups lay in the predicting power of Technical Skills, Perceived Context Support and Perceived University Support in explaining the Entrepreneurial Orientation Related Dimensions.
Resumo:
During this work, done mainly in the laboratories of the department of Industrial Chemistry and Materials of the University of Bologna but also in the laboratories of the Carnegie Mellon University in collaboration with prof. K. Matyjaszewski and at the university of Zaragoza in collaboration with prof. J. Barberá, was focused mainly on the synthesis and characterization of new functional polymeric materials. In the past years our group gained a deep knowledge about the photomodulation of azobenzene containing polymers. The aim of this thesis is to push forward the performances of these materials by the synthesis of well defined materials, in which, by a precise control over the macromolecular structures, better or even new functionality can be delivered to the synthesized material. For this purpose, besides the rich photochemistry of azoaromatic polymers that brings to the application, the control offered from the recent techniques of controlled radical polymerization, ATRP over all, gives an enormous range of opportunity for the developing of a new generation of functional materials whose properties are determinate not only by the chemical nature of the functional center (e.g. azoaromatic chromophore) but are tuned and even amplified by a synergy with the whole macromolecular structure. Old materials in new structures. In this contest the work of this thesis was focused mainly on the synthesis and characterization of well defined azoaromatic polymers in order to establish, for the first time, precise structure-properties correlation. In fact a series of well defined different azopolymers, chiral and achiral, with different molecular weight and highly monodisperse were synthesized and their properties were studied, in terms of photoexpansion and photomodulation of chirality. We were then able to study the influence of the macromolecular structure in terms of molecular weight and ramification on the studied properties. The huge amount of possibility offered by the tailoring of the macromolecular structure were exploited for the synthesis of new cholesteric photochromic polymers that can be used as a smart label for the certification of the thermal history of any thermosensitive product. Finally the ATRP synthesis allowed us to synthesize a total new class of material, named molecular brushes: a flat surface covered with an ultra thin layer of polymeric chain covalently bond onto the surface from one end. This new class of materials is of extreme interest as they offer the possibility to tune and manage the interaction of the surface with the environment. In this contest we synthesized both azoaromatic surfaces, growing directly the polymer from the surface, and mixed brushes: surfaces covered with incompatible macromolecules. Both type of surfaces acts as “smart” surfaces: the first it is able to move the orientation of a LC cell by simply photomodulation and, thanks to the robustness of the covalent bond, can be used as a command surface overcoming all the limitation due to the dewetting of the active layer. The second type of surface, functionalized by a grafting-to method, can self assemble the topmost layer responding to changed environmental conditions, exposing different functionality according to different environment.