938 resultados para k-means clustering
Resumo:
Background: Pain is defined as both a sensory and an emotional experience. Acute postoperative tooth extraction pain is assessed and treated as a physiological (sensory) pain while chronic pain is a biopsychosocial problem. The purpose of this study was to assess whether psychological and social changes Occur in the acute pain state. Methods: A biopsychosocial pain questionnaire was completed by 438 subjects (165 males, 273 females) with acute postoperative pain at 24 hours following the surgical extraction of teeth and compared with 273 subjects (78 males, 195 females) with chronic orofacial pain. Statistical methods used a k-means cluster analysis. Results: Three clusters were identified in the acute pain group: 'unaffected', 'disabled' and 'depressed, anxious and disabled'. Psychosocial effects showed 24.8 per cent feeling 'distress/suffering' and 15.1 per cent 'sad and depressed'. Females reported higher pain intensity and more distress, depression and inadequate medication for pain relief (p
Resumo:
Fuzzy data has grown to be an important factor in data mining. Whenever uncertainty exists, simulation can be used as a model. Simulation is very flexible, although it can involve significant levels of computation. This article discusses fuzzy decision-making using the grey related analysis method. Fuzzy models are expected to better reflect decision-making uncertainty, at some cost in accuracy relative to crisp models. Monte Carlo simulation is used to incorporate experimental levels of uncertainty into the data and to measure the impact of fuzzy decision tree models using categorical data. Results are compared with decision tree models based on crisp continuous data.
Resumo:
The texture segmentation techniques are diversified by the existence of several approaches. In this paper, we propose fuzzy features for the segmentation of texture image. For this purpose, a membership function is constructed to represent the effect of the neighboring pixels on the current pixel in a window. Using these membership function values, we find a feature by weighted average method for the current pixel. This is repeated for all pixels in the window treating each time one pixel as the current pixel. Using these fuzzy based features, we derive three descriptors such as maximum, entropy, and energy for each window. To segment the texture image, the modified mountain clustering that is unsupervised and fuzzy c-means clustering have been used. The performance of the proposed features is compared with that of fractal features.
Resumo:
An overview of neural networks, covering multilayer perceptrons, radial basis functions, constructive algorithms, Kohonen and K-means unupervised algorithms, RAMnets, first and second order training methods, and Bayesian regularisation methods.
Resumo:
This dissertation reports the results of a study that examined differences between genders in a sample of adolescents from a residential substance abuse treatment facility. The sample included 72 males and 65 females, ages 12 through 17. The data were archival, having been originally collected for a study of elopement from treatment. The current study included 23 variables. The variables were from multiple dimensions, including socioeconomic, legal, school, family, substance abuse, psychological, social support, and treatment histories. Collectively, they provided information about problem behaviors and psychosocial problems that are correlates of adolescent substance abuse. The study hypothesized that these problem behaviors and psychosocial problems exist in different patterns and combinations between genders.^ Further, it expected that these patterns and combinations would constitute profiles important for treatment. K-means cluster analysis identified differential profiles between genders in all three areas: problem behaviors, psychosocial problems, and treatment profiles. In the dimension of problem behaviors, the predominantly female group was characterized as suicidal and destructive, while the predominantly male group was identified as aggressive and low achieving. In the dimension of psychosocial problems, the predominantly female group was characterized as abused depressives, while the male group was identified as asocial, low problem severity. A third group, neither predominantly female or male, was characterized as social, high problem severity. When these dimensions were combined to form treatment profiles, the predominantly female group was characterized as abused, self-harmful, and social, and the male group was identified as aggressive, destructive, low achieving, and asocial. Finally, logistic regression and discriminant analysis were used to determine whether a history of sexual and physical abuse impacted problem behavior differentially between genders. Sexual abuse had a substantially greater influence in producing self-mutilating and suicidal behavior among females than among males. Additionally, a model including sexual abuse, physical abuse, low family support, and low support from friends showed a moderate capacity to predict unusual harmful behavior (fire-starting and cruelty to animals) among males. Implications for social work practice, social work research, and systems science are discussed. ^
Resumo:
The aim of the present study was to trace the mortality profile of the elderly in Brazil using two neighboring age groups: 60 to 69 years (young-old) and 80 years or more (oldest-old). To do this, we sought to characterize the trend and distinctions of different mortality profiles, as well as the quality of the data and associations with socioeconomic and sanitary conditions in the micro-regions of Brazil. Data was collected from the Mortality Information System (SIM) and the Brazilian Institute of Geography and Statistics (IBGE). Based on these data, the coefficients of mortality were calculated for the chapters of the International Disease Classification (ICD-10). A polynomial regression model was used to ascertain the trend of the main chapters. Non-hierarchical cluster analysis (K-Means) was used to obtain the profiles for different Brazilian micro-regions. Factorial analysis of the contextual variables was used to obtain the socio-economic and sanitary deprivation indices (IPSS). The trend of the CMId and of the ratio of its values in the two age groups confirmed a decrease in most of the indicators, particularly for badly-defined causes among the oldest-old. Among the young-old, the following profiles emerged: the Development Profile; the Modernity Profile; the Epidemiological Paradox Profile and the Ignorance Profile. Among the oldest-old, the latter three profiles were confirmed, in addition to the Low Mortality Rates Profile. When comparing the mean IPSS values in global terms, all of the groups were different in both of the age groups. The Ignorance Profile was compared with the other profiles using orthogonal contrasts. This profile differed from all of the others in isolation and in clusters. However, the mean IPSS was similar for the Low Mortality Rates Profile among the oldest-old. Furthermore, associations were found between the data quality indicators, the CMId for badly-defined causes, the general coefficient of mortality for each age group (CGMId) and the IPSS of the micro-regions. The worst rates were recorded in areas with the greatest socioeconomic and sanitary deprivation. The findings of the present study show that, despite the decrease in the mortality coefficients, there are notable differences in the profiles related to contextual conditions, including regional differences in data quality. These differences increase the vulnerability of the age groups studied and the health iniquities that are already present.
Resumo:
A modelação dos sistemas industriais apresenta para as organizações uma vantagem estratégica no domínio do estudo dos seus processos produtivos. Através da modelação será possível aumentar o conhecimento sobre os sistemas podendo permitir, quando possível, melhorias na gestão e planeamento da produção. Este conhecimento poderá permitir também um aumento da eficiência dos processos produtivos, através da melhoria ou eliminação das principais perdas detetadas no processo. Este trabalho tem como principal objetivo o desenvolvimento e validação de uma ferramenta de modelação, previsão e análise para sistemas produtivos industriais, tendo em vista o aumento do conhecimento sobre estes. Para a execução e desenvolvimento deste trabalho, foram utilizadas e desenvolvidas várias ferramentas, conceitos, metodologias e fundamentos teóricos conhecidos da bibliografia, como OEE (Overall Equipment Effectiveness), RdP (Redes de Petri), Séries Temporais, Kmeans, ou SPC (Statistical Process Control). A ferramenta de modelação, previsão e análise desenvolvida e descrita neste trabalho, mostrou-se capaz de auxiliar na deteção e interpretação das causas que influenciam os resultados do sistema produtivo e originam perdas, demonstrando as vantagens esperadas. Estes resultados foram baseados em dados reais de um sistema produtivo.
Resumo:
Ground Delay Programs (GDP) are sometimes cancelled before their initial planned duration and for this reason aircraft are delayed when it is no longer needed. Recovering this delay usually leads to extra fuel consumption, since the aircraft will typically depart after having absorbed on ground their assigned delay and, therefore, they will need to cruise at more fuel consuming speeds. Past research has proposed speed reduction strategy aiming at splitting the GDP-assigned delay between ground and airborne delay, while using the same fuel as in nominal conditions. Being airborne earlier, an aircraft can speed up to nominal cruise speed and recover part of the GDP delay without incurring extra fuel consumption if the GDP is cancelled earlier than planned. In this paper, all GDP initiatives that occurred in San Francisco International Airport during 2006 are studied and characterised by a K-means algorithm into three different clusters. The centroids for these three clusters have been used to simulate three different GDPs at the airport by using a realistic set of inbound traffic and the Future Air Traffic Management Concepts Evaluation Tool (FACET). The amount of delay that can be recovered using this cruise speed reduction technique, as a function of the GDP cancellation time, has been computed and compared with the delay recovered with the current concept of operations. Simulations have been conducted in calm wind situation and without considering a radius of exemption. Results indicate that when aircraft depart early and fly at the slower speed they can recover additional delays, compared to current operations where all delays are absorbed prior to take-off, in the event the GDP cancels early. There is a variability of extra delay recovered, being more significant, in relative terms, for those GDPs with a relatively low amount of demand exceeding the airport capacity.
Resumo:
[EN]In this paper an architecture for an estimator of short-term wind farm power is proposed. The estimator is made up of a Linear Machine classifier and a set of k Multilayer Perceptrons, training each one for a specific subspace of the input space. The splitting of the input dataset into the k clusters is done using a k-means technique, obtaining the equivalent Linear Machine classifier from the cluster centroids...
Resumo:
O objetivo da avaliação de impactos ambientais (AIA) é permitir uma análise integrada de possíveis impactos diretos ou indiretos ao meio ambiente decorrentes da implantação e operação de empreendimentos, de forma a propor de medidas ou programas que visem evitar, mitigar ou compensar tais impactos. Para tanto é necessário conhecer as diversas características das áreas direta e indiretamente afetadas pela instalação de um projeto, tais como as condições meteorológicas e climatológicas. Estas também são relevantes no estudo das emissões em cenários de operação regular ou acidental de empreendimentos, dada sua influência nas condições de transporte e de dispersão de poluentes na atmosfera. Neste trabalho é realizado um estudo das condições de dispersão de poluentes na atmosfera para a região da Central Nuclear Almirante Álvaro Alberto (CNAAA) em Angra dos Reis, no Estado do Rio de Janeiro, utilizando o modelo WRF, considerando um cenário acidental com liberações por 48 horas. Os dois episódios simulados representam os regimes de tempo predominantes na região obtidos a partir da análise pelo o método k-means sobre as EOFs para o campo de pressões ao nível médio do mar entre os anos de 1985 e 2014. A aplicação da metodologia dos regimes de tempo permite observar os fenômenos meteorológicos de grande escala persistentes e recorrentes sobre uma dada região, servindo como uma ferramenta para a elaboração de estudos e documentos técnicos que fundamentem a decisão dos órgãos reguladores.
Resumo:
Background: The capacity of European pear fruit (Pyrus communis L.) to ripen after harvest develops during the final stages of growth on the tree. The objective of this study was to characterize changes in 'Bartlett' pear fruit physico-chemical properties and transcription profiles during fruit maturation leading to attainment of ripening capacity. Results: The softening response of pear fruit held for 14days at 20°C after harvest depended on their maturity. We identified four maturity stages: S1-failed to soften and S2- displayed partial softening (with or without ET-ethylene treatment); S3 - able to soften following ET; and S4 - able to soften without ET. Illumina sequencing and Trinity assembly generated 68,010 unigenes (mean length of 911bp), of which 32.8% were annotated to the RefSeq plant database. Higher numbers of differentially expressed transcripts were recorded in the S3-S4 and S1-S2 transitions (2805 and 2505 unigenes, respectively) than in the S2-S3 transition (2037 unigenes). High expression of genes putatively encoding pectin degradation enzymes in the S1-S2 transition suggests pectic oligomers may be involved as early signals triggering the transition to responsiveness to ethylene in pear fruit. Moreover, the co-expression of these genes with Exps (Expansins) suggests their collaboration in modifying cell wall polysaccharide networks that are required for fruit growth. K-means cluster analysis revealed that auxin signaling associated transcripts were enriched in cluster K6 that showed the highest gene expression at S3. AP2/EREBP (APETALA 2/ethylene response element binding protein) and bHLH (basic helix-loop-helix) transcripts were enriched in all three transition S1-S2, S2-S3, and S3-S4. Several members of Aux/IAA (Auxin/indole-3-acetic acid), ARF (Auxin response factors), and WRKY appeared to play an important role in orchestrating the S2-S3 transition. Conclusions: We identified maturity stages associated with the development of ripening capacity in 'Bartlett' pear, and described the transcription profile of fruit at these stages. Our findings suggest that auxin is essential in regulating the transition of pear fruit from being ethylene-unresponsive (S2) to ethylene-responsive (S3), resulting in fruit softening. The transcriptome will be helpful for future studies about specific developmental pathways regulating the transition to ripening. © 2015 Nham et al.
Resumo:
En este trabajo se propone un nuevo sistema híbrido para el análisis de sentimientos en clase múltiple basado en el uso del diccionario General Inquirer (GI) y un enfoque jerárquico del clasificador Logistic Model Tree (LMT). Este nuevo sistema se compone de tres capas, la capa bipolar (BL) que consta de un LMT (LMT-1) para la clasificación de la polaridad de sentimientos, mientras que la segunda capa es la capa de la Intensidad (IL) y comprende dos LMTs (LMT-2 y LMT3) para detectar por separado tres intensidades de sentimientos positivos y tres intensidades de sentimientos negativos. Sólo en la fase de construcción, la capa de Agrupación (GL) se utiliza para agrupar las instancias positivas y negativas mediante el empleo de 2 k-means, respectivamente. En la fase de Pre-procesamiento, los textos son segmentados por palabras que son etiquetadas, reducidas a sus raíces y sometidas finalmente al diccionario GI con el objetivo de contar y etiquetar sólo los verbos, los sustantivos, los adjetivos y los adverbios con 24 marcadores que se utilizan luego para calcular los vectores de características. En la fase de Clasificación de Sentimientos, los vectores de características se introducen primero al LMT-1, a continuación, se agrupan en GL según la etiqueta de clase, después se etiquetan estos grupos de forma manual, y finalmente las instancias positivas son introducidas a LMT-2 y las instancias negativas a LMT-3. Los tres árboles están entrenados y evaluados usando las bases de datos Movie Review y SenTube con validación cruzada estratificada de 10-pliegues. LMT-1 produce un árbol de 48 hojas y 95 de tamaño, con 90,88% de exactitud, mientras que tanto LMT-2 y LMT-3 proporcionan dos árboles de una hoja y uno de tamaño, con 99,28% y 99,37% de exactitud,respectivamente. Los experimentos muestran que la metodología de clasificación jerárquica propuesta da un mejor rendimiento en comparación con otros enfoques prevalecientes.
Resumo:
En el presente trabajo se presenta un análisis para construir un modelo tridimensional de una pieza sólida a partir de la integración de los perfiles bidimensionales aportados por la interfase de un escáner láser, el cual hubo sido acoplado a un brazo robótico, y empleando cuaterniones para la descripción espacial del ensamble. Este ensamble escáner - robot está ideado para asistir en los procesos de inspección de las industrias manufactureras. Se presenta además un análisis, basado en el análisis de componentes principales ponderado (WPCA) combinado con el algoritmo k – means, para discriminar los puntos atípicos que aparecen de manera inherente en los perfiles aportados por la interfase del escáner láser, con lo cual es posible, disminuir la carga computacional del procesamiento al reducir la nube de puntos siguiendo la tendencia lineal de ciertos bloques de puntos.
Resumo:
A farinha é um derivado da mandioca de grande importância alimentar, porém com pequena padronização, por causa do processo artesanal de fabricação. O objetivo deste estudo foi analisar a variabilidade da farinha de mandioca artesanal, produzida no Território da Cidadania do Vale do Juruá, Acre, e agrupar os municípios produtores de acordo com suas características físico-químicas, por meio de análises multivariadas, determinando sua influência na qualidade da farinha de mandioca. Foram analisadas 138 amostras de farinhas, coletadas nos municípios de Cruzeiro do Sul, Mâncio Lima, Rodrigues Alves, Porto Walter e Marechal Thaumaturgo, com determinação da umidade, cinzas, proteína total, extrato etéreo, fibra total, carboidratos totais, valor energético, acidez titulável, pH e atividade de água. Os dados foram analisados pela estatística descritiva com comparação de médias pelo teste de Tukey e estatística multivariada, de forma complementar entre si; com análises de agrupamento hierárquica, pela distância euclidiana e método de Ward, e, não hierárquica, k-means, análise de componentes principais, pela matriz de correlação, e análise discriminante, pelo método da exclusão progressiva passo a passo. Os resultados mostraram que as farinhas encontram-se dentro das normas de qualidade exigidas em legislação. As diferentes análises multivariadas foram coerentes, indicando que há um padrão de distribuição das características físico-químicas das farinhas, o que sugere padrões no processo de fabricação, distribuídos conforme a localização dos municípios analisados. As características de maior influência na discriminação das farinhas são acidez, pH, atividade de água e umidade, indicando que o modo de fabricação tem grande influência na qualidade da farinha produzida.
Resumo:
In recent years, the DFA introduced by Peng, was established as an important tool capable of detecting long-range autocorrelation in time series with non-stationary. This technique has been successfully applied to various areas such as: Econophysics, Biophysics, Medicine, Physics and Climatology. In this study, we used the DFA technique to obtain the Hurst exponent (H) of the profile of electric density profile (RHOB) of 53 wells resulting from the Field School of Namorados. In this work we want to know if we can or not use H to spatially characterize the spatial data field. Two cases arise: In the first a set of H reflects the local geology, with wells that are geographically closer showing similar H, and then one can use H in geostatistical procedures. In the second case each well has its proper H and the information of the well are uncorrelated, the profiles show only random fluctuations in H that do not show any spatial structure. Cluster analysis is a method widely used in carrying out statistical analysis. In this work we use the non-hierarchy method of k-means. In order to verify whether a set of data generated by the k-means method shows spatial patterns, we create the parameter Ω (index of neighborhood). High Ω shows more aggregated data, low Ω indicates dispersed or data without spatial correlation. With help of this index and the method of Monte Carlo. Using Ω index we verify that random cluster data shows a distribution of Ω that is lower than actual cluster Ω. Thus we conclude that the data of H obtained in 53 wells are grouped and can be used to characterize space patterns. The analysis of curves level confirmed the results of the k-means