902 resultados para k-Means


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This papers examines the use of trajectory distance measures and clustering techniques to define normal
and abnormal trajectories in the context of pedestrian tracking in public spaces. In order to detect abnormal
trajectories, what is meant by a normal trajectory in a given scene is firstly defined. Then every trajectory
that deviates from this normality is classified as abnormal. By combining Dynamic Time Warping and a
modified K-Means algorithms for arbitrary-length data series, we have developed an algorithm for trajectory
clustering and abnormality detection. The final system performs with an overall accuracy of 83% and 75%
when tested in two different standard datasets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN]In this paper an architecture for an estimator of short-term wind farm power is proposed. The estimator is made up of a Linear Machine classifier and a set of k Multilayer Perceptrons, training each one for a specific subspace of the input space. The splitting of the input dataset into the k clusters is done using a k-means technique, obtaining the equivalent Linear Machine classifier from the cluster centroids...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo da avaliação de impactos ambientais (AIA) é permitir uma análise integrada de possíveis impactos diretos ou indiretos ao meio ambiente decorrentes da implantação e operação de empreendimentos, de forma a propor de medidas ou programas que visem evitar, mitigar ou compensar tais impactos. Para tanto é necessário conhecer as diversas características das áreas direta e indiretamente afetadas pela instalação de um projeto, tais como as condições meteorológicas e climatológicas. Estas também são relevantes no estudo das emissões em cenários de operação regular ou acidental de empreendimentos, dada sua influência nas condições de transporte e de dispersão de poluentes na atmosfera. Neste trabalho é realizado um estudo das condições de dispersão de poluentes na atmosfera para a região da Central Nuclear Almirante Álvaro Alberto (CNAAA) em Angra dos Reis, no Estado do Rio de Janeiro, utilizando o modelo WRF, considerando um cenário acidental com liberações por 48 horas. Os dois episódios simulados representam os regimes de tempo predominantes na região obtidos a partir da análise pelo o método k-means sobre as EOFs para o campo de pressões ao nível médio do mar entre os anos de 1985 e 2014. A aplicação da metodologia dos regimes de tempo permite observar os fenômenos meteorológicos de grande escala persistentes e recorrentes sobre uma dada região, servindo como uma ferramenta para a elaboração de estudos e documentos técnicos que fundamentem a decisão dos órgãos reguladores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recent advent of new technologies has led to huge amounts of genomic data. With these data come new opportunities to understand biological cellular processes underlying hidden regulation mechanisms and to identify disease related biomarkers for informative diagnostics. However, extracting biological insights from the immense amounts of genomic data is a challenging task. Therefore, effective and efficient computational techniques are needed to analyze and interpret genomic data. In this thesis, novel computational methods are proposed to address such challenges: a Bayesian mixture model, an extended Bayesian mixture model, and an Eigen-brain approach. The Bayesian mixture framework involves integration of the Bayesian network and the Gaussian mixture model. Based on the proposed framework and its conjunction with K-means clustering and principal component analysis (PCA), biological insights are derived such as context specific/dependent relationships and nested structures within microarray where biological replicates are encapsulated. The Bayesian mixture framework is then extended to explore posterior distributions of network space by incorporating a Markov chain Monte Carlo (MCMC) model. The extended Bayesian mixture model summarizes the sampled network structures by extracting biologically meaningful features. Finally, an Eigen-brain approach is proposed to analyze in situ hybridization data for the identification of the cell-type specific genes, which can be useful for informative blood diagnostics. Computational results with region-based clustering reveals the critical evidence for the consistency with brain anatomical structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The capacity of European pear fruit (Pyrus communis L.) to ripen after harvest develops during the final stages of growth on the tree. The objective of this study was to characterize changes in 'Bartlett' pear fruit physico-chemical properties and transcription profiles during fruit maturation leading to attainment of ripening capacity. Results: The softening response of pear fruit held for 14days at 20°C after harvest depended on their maturity. We identified four maturity stages: S1-failed to soften and S2- displayed partial softening (with or without ET-ethylene treatment); S3 - able to soften following ET; and S4 - able to soften without ET. Illumina sequencing and Trinity assembly generated 68,010 unigenes (mean length of 911bp), of which 32.8% were annotated to the RefSeq plant database. Higher numbers of differentially expressed transcripts were recorded in the S3-S4 and S1-S2 transitions (2805 and 2505 unigenes, respectively) than in the S2-S3 transition (2037 unigenes). High expression of genes putatively encoding pectin degradation enzymes in the S1-S2 transition suggests pectic oligomers may be involved as early signals triggering the transition to responsiveness to ethylene in pear fruit. Moreover, the co-expression of these genes with Exps (Expansins) suggests their collaboration in modifying cell wall polysaccharide networks that are required for fruit growth. K-means cluster analysis revealed that auxin signaling associated transcripts were enriched in cluster K6 that showed the highest gene expression at S3. AP2/EREBP (APETALA 2/ethylene response element binding protein) and bHLH (basic helix-loop-helix) transcripts were enriched in all three transition S1-S2, S2-S3, and S3-S4. Several members of Aux/IAA (Auxin/indole-3-acetic acid), ARF (Auxin response factors), and WRKY appeared to play an important role in orchestrating the S2-S3 transition. Conclusions: We identified maturity stages associated with the development of ripening capacity in 'Bartlett' pear, and described the transcription profile of fruit at these stages. Our findings suggest that auxin is essential in regulating the transition of pear fruit from being ethylene-unresponsive (S2) to ethylene-responsive (S3), resulting in fruit softening. The transcriptome will be helpful for future studies about specific developmental pathways regulating the transition to ripening. © 2015 Nham et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forensic speaker comparison exams have complex characteristics, demanding a long time for manual analysis. A method for automatic recognition of vowels, providing feature extraction for acoustic analysis is proposed, aiming to contribute as a support tool in these exams. The proposal is based in formant measurements by LPC (Linear Predictive Coding), selectively by fundamental frequency detection, zero crossing rate, bandwidth and continuity, with the clustering being done by the k-means method. Experiments using samples from three different databases have shown promising results, in which the regions corresponding to five of the Brasilian Portuguese vowels were successfully located, providing visualization of a speaker’s vocal tract behavior, as well as the detection of segments corresponding to target vowels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este trabajo se propone un nuevo sistema híbrido para el análisis de sentimientos en clase múltiple basado en el uso del diccionario General Inquirer (GI) y un enfoque jerárquico del clasificador Logistic Model Tree (LMT). Este nuevo sistema se compone de tres capas, la capa bipolar (BL) que consta de un LMT (LMT-1) para la clasificación de la polaridad de sentimientos, mientras que la segunda capa es la capa de la Intensidad (IL) y comprende dos LMTs (LMT-2 y LMT3) para detectar por separado tres intensidades de sentimientos positivos y tres intensidades de sentimientos negativos. Sólo en la fase de construcción, la capa de Agrupación (GL) se utiliza para agrupar las instancias positivas y negativas mediante el empleo de 2 k-means, respectivamente. En la fase de Pre-procesamiento, los textos son segmentados por palabras que son etiquetadas, reducidas a sus raíces y sometidas finalmente al diccionario GI con el objetivo de contar y etiquetar sólo los verbos, los sustantivos, los adjetivos y los adverbios con 24 marcadores que se utilizan luego para calcular los vectores de características. En la fase de Clasificación de Sentimientos, los vectores de características se introducen primero al LMT-1, a continuación, se agrupan en GL según la etiqueta de clase, después se etiquetan estos grupos de forma manual, y finalmente las instancias positivas son introducidas a LMT-2 y las instancias negativas a LMT-3. Los tres árboles están entrenados y evaluados usando las bases de datos Movie Review y SenTube con validación cruzada estratificada de 10-pliegues. LMT-1 produce un árbol de 48 hojas y 95 de tamaño, con 90,88% de exactitud, mientras que tanto LMT-2 y LMT-3 proporcionan dos árboles de una hoja y uno de tamaño, con 99,28% y 99,37% de exactitud,respectivamente. Los experimentos muestran que la metodología de clasificación jerárquica propuesta da un mejor rendimiento en comparación con otros enfoques prevalecientes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En el presente trabajo se presenta un análisis para construir un modelo tridimensional de una pieza sólida a partir de la integración de los perfiles bidimensionales aportados por la interfase de un escáner láser, el cual hubo sido acoplado a un brazo robótico, y empleando cuaterniones para la descripción espacial del ensamble. Este ensamble escáner - robot está ideado para asistir en los procesos de inspección de las industrias manufactureras. Se presenta además un análisis, basado en el análisis de componentes principales ponderado (WPCA) combinado con el algoritmo k – means, para discriminar los puntos atípicos que aparecen de manera inherente en los perfiles aportados por la interfase del escáner láser, con lo cual es posible, disminuir la carga computacional del procesamiento al reducir la nube de puntos siguiendo la tendencia lineal de ciertos bloques de puntos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A farinha é um derivado da mandioca de grande importância alimentar, porém com pequena padronização, por causa do processo artesanal de fabricação. O objetivo deste estudo foi analisar a variabilidade da farinha de mandioca artesanal, produzida no Território da Cidadania do Vale do Juruá, Acre, e agrupar os municípios produtores de acordo com suas características físico-químicas, por meio de análises multivariadas, determinando sua influência na qualidade da farinha de mandioca. Foram analisadas 138 amostras de farinhas, coletadas nos municípios de Cruzeiro do Sul, Mâncio Lima, Rodrigues Alves, Porto Walter e Marechal Thaumaturgo, com determinação da umidade, cinzas, proteína total, extrato etéreo, fibra total, carboidratos totais, valor energético, acidez titulável, pH e atividade de água. Os dados foram analisados pela estatística descritiva com comparação de médias pelo teste de Tukey e estatística multivariada, de forma complementar entre si; com análises de agrupamento hierárquica, pela distância euclidiana e método de Ward, e, não hierárquica, k-means, análise de componentes principais, pela matriz de correlação, e análise discriminante, pelo método da exclusão progressiva passo a passo. Os resultados mostraram que as farinhas encontram-se dentro das normas de qualidade exigidas em legislação. As diferentes análises multivariadas foram coerentes, indicando que há um padrão de distribuição das características físico-químicas das farinhas, o que sugere padrões no processo de fabricação, distribuídos conforme a localização dos municípios analisados. As características de maior influência na discriminação das farinhas são acidez, pH, atividade de água e umidade, indicando que o modo de fabricação tem grande influência na qualidade da farinha produzida.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of this study is to apply recently developed methods of physical-statistic to time series analysis, particularly in electrical induction s profiles of oil wells data, to study the petrophysical similarity of those wells in a spatial distribution. For this, we used the DFA method in order to know if we can or not use this technique to characterize spatially the fields. After obtain the DFA values for all wells, we applied clustering analysis. To do these tests we used the non-hierarchical method called K-means. Usually based on the Euclidean distance, the K-means consists in dividing the elements of a data matrix N in k groups, so that the similarities among elements belonging to different groups are the smallest possible. In order to test if a dataset generated by the K-means method or randomly generated datasets form spatial patterns, we created the parameter Ω (index of neighborhood). High values of Ω reveals more aggregated data and low values of Ω show scattered data or data without spatial correlation. Thus we concluded that data from the DFA of 54 wells are grouped and can be used to characterize spatial fields. Applying contour level technique we confirm the results obtained by the K-means, confirming that DFA is effective to perform spatial analysis

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, the DFA introduced by Peng, was established as an important tool capable of detecting long-range autocorrelation in time series with non-stationary. This technique has been successfully applied to various areas such as: Econophysics, Biophysics, Medicine, Physics and Climatology. In this study, we used the DFA technique to obtain the Hurst exponent (H) of the profile of electric density profile (RHOB) of 53 wells resulting from the Field School of Namorados. In this work we want to know if we can or not use H to spatially characterize the spatial data field. Two cases arise: In the first a set of H reflects the local geology, with wells that are geographically closer showing similar H, and then one can use H in geostatistical procedures. In the second case each well has its proper H and the information of the well are uncorrelated, the profiles show only random fluctuations in H that do not show any spatial structure. Cluster analysis is a method widely used in carrying out statistical analysis. In this work we use the non-hierarchy method of k-means. In order to verify whether a set of data generated by the k-means method shows spatial patterns, we create the parameter Ω (index of neighborhood). High Ω shows more aggregated data, low Ω indicates dispersed or data without spatial correlation. With help of this index and the method of Monte Carlo. Using Ω index we verify that random cluster data shows a distribution of Ω that is lower than actual cluster Ω. Thus we conclude that the data of H obtained in 53 wells are grouped and can be used to characterize space patterns. The analysis of curves level confirmed the results of the k-means

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Recurrent spontaneous abortion is one of the diseases that can lead to physical, psychological, and, economical problems for both individuals and society. Recently a few numbers of genetic polymorphisms in kinase insert domain-containing receptor (KDR) gene are examined that can endanger the life of the fetus in pregnant women. Objective: The risk of KDR gene polymorphisms was investigated in Iranian women with idiopathic recurrent spontaneous abortion (RSA). Materials and Methods: A case controlled study was performed. One hundred idiopathic recurrent spontaneous abortion patients with at least two consecutive pregnancy losses before 20 weeks of gestational age with normal karyotypes were included in the study. Also, 100 healthy women with at least one natural pregnancy were studied as control group. Two functional SNPs located in KDR gene; rs1870377 (Q472H), and rs2305948 (V297I) as well as one tag SNP in the intron region (rs6838752) were genotyped by using PCR based restriction fragment length polymorphism (PCR-RFLP) technique. Haplotype frequency was determined for these three SNPs’ genotypes. Analysis of genetic STRUCTURE and K means clustering were performed to study genetic variation. Results: Functional SNP (rs1870377) was highly linked to tag SNP (rs6838752) (D´ value=0. 214; χ2 = 16.44, p<0. 001). K means clustering showed that k = 8 as the best fit for the optimal number of genetic subgroups in our studied materials. This result was in agreement with Neighbor Joining cluster analysis. Conclusion: In our study, the allele and genotype frequencies were not associated with RSA between patient and control individuals. Inconsistent results in different populations with different allele frequencies among RSA patients and controls may be due to ethnic variation and used sample size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extent of the Brazilian Atlantic rainforest, a global biodiversity hotspot, has been reduced to less than 7% of its original range. Yet, it contains one of the richest butterfly fauna in the world. Butterflies are commonly used as environmental indicators, mostly because of their strict association with host plants, microclimate and resource availability. This research describes diversity, composition and species richness of frugivorous butterflies in a forest fragment in the Brazilian Northeast. It compares communities in different physiognomies and seasons. The climate in the study area is classified as tropical rainy, with two well defined seasons. Butterfly captures were made with 60 Van Someren-Rydon traps, randomly located within six different habitat units (10 traps per unit) that varied from very open (e.g. coconut plantation) to forest interior. Sampling was made between January and December 2008, for five days each month. I captured 12090 individuals from 32 species. The most abundant species were Taygetis laches, Opsiphanes invirae and Hamadryas februa, which accounted for 70% of all captures. Similarity analysis identified two main groups, one of species associated with open or disturbed areas and a second by species associated with shaded areas. There was a strong seasonal component in species composition, with less species and lower abundance in the dry season and more species and higher abundance in the rainy season. K-means analysis indicates that choice of habitat units overestimated faunal perceptions, suggesting less distinct units. The species Taygetis virgilia, Hamadryas chloe, Callicore pygas e Morpho achilles were associated with less disturbed habitats, while Yphthimoides sp, Historis odius, H. acheronta, Hamadryas feronia e Siderone marthesia likey indicate open or disturbed habitats. This research brings important information for conservation of frugivorous butterflies, and will serve as baseline for future projects in environmental monitoring

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ the whole brain network to perform the ADDT language task; on the contrary, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was carried out. The analysis revealed no substantial global network feature differences between the patient and control groups. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient’s extent of activation network showed a tendency towards more random networks. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. The left hemispheric hubs displayed greater centrality values for patients, whereas the right hemispheric hubs displayed greater centrality values for controls. This hub hemispheric disparity was not correlated with a right atypical language laterality found in six patients. Finally it was shown that a multi-level unsupervised clustering scheme based on self-organizing maps, a type of artificial neural network, and k-means was able to fairly and blindly separate the subjects into their respective patient or control groups. The clustering was initiated using the local nodal centrality measurements only. Compared to the extent of activation network, the intensity of activation network clustering demonstrated better precision. This outcome supports the assertion that the local centrality differences presented by the intensity of activation network can be associated with focal epilepsy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A problemática relacionada com a modelação da qualidade da água de albufeiras pode ser abordada de diversos pontos de vista. Neste trabalho recorre-se a metodologias de resolução de problemas que emanam da Área Cientifica da Inteligência Artificial, assim como a ferramentas utilizadas na procura de soluções como as Árvores de Decisão, as Redes Neuronais Artificiais e a Aproximação de Vizinhanças. Actualmente os métodos de avaliação da qualidade da água são muito restritivos já que não permitem aferir a qualidade da água em tempo real. O desenvolvimento de modelos de previsão baseados em técnicas de Descoberta de Conhecimento em Bases de Dados, mostrou ser uma alternativa tendo em vista um comportamento pró-activo que pode contribuir decisivamente para diagnosticar, preservar e requalificar as albufeiras. No decurso do trabalho, foi utilizada a aprendizagem não-supervisionada tendo em vista estudar a dinâmica das albufeiras sendo descritos dois comportamentos distintos, relacionados com a época do ano. ABSTRACT: The problems related to the modelling of water quality in reservoirs can be approached from different viewpoints. This work resorts to methods of resolving problems emanating from the Scientific Area of Artificial lntelligence as well as to tools used in the search for solutions such as Decision Trees, Artificial Neural Networks and Nearest-Neighbour Method. Currently, the methods for assessing water quality are very restrictive because they do not indicate the water quality in real time. The development of forecasting models, based on techniques of Knowledge Discovery in Databases, shows to be an alternative in view of a pro-active behavior that may contribute to diagnose, maintain and requalify the water bodies. ln this work. unsupervised learning was used to study the dynamics of reservoirs, being described two distinct behaviors, related to the time of year.