972 resultados para in vitro models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphotericin B (AmB), an antifungal agent that presents a broad spectrum of activity, remains the gold standard in the antifungal therapy. However, sometimes the high level of toxicity forbids its clinical use. The aim of this work was to evaluate and compare the efficacy and toxicity in vitro of Fungizon™ (AmB-D) and two new different AmB formulations. Methods: three products were studied: Fungizon™, and two Fungizon™ /Lipofundin™ admixtures, which were diluted through two methods: in the first one, Fungizon™ was previously diluted with water for injection and then, in Lipofundin™ (AmB-DAL); the second method consisted of a primary dilution of AmB-D as a powder in the referred emulsion (AmB-DL). For the in vitro assay, two cell models were used: Red Blood Cells (RBC) from human donors and Candida tropicallis (Ct). The in vitro evaluation (K+ leakage, hemoglobin leakage and cell survival rate-CSR) was performed at four AmB concentrations (from 50 to 0.05mg.L-1). Results: The results showed that the action of AmB was not only concentration dependent, but also cellular type and vehicle kind dependent. At AmB concentrations of 50 mg.L-1, although the hemoglobin leakage for AmB-D was almost complete (99.51), for AmB-DAL and AmB-DL this value tended to zero. The p = 0.000 showed that AmB-D was significantly more hemolytic. Conclusion: The Fungizon™- Lipofundin™ admixtures seem to be the more valuable AmB carrier systems due to their best therapeutic index presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The In vitro-in vivo pharmacokinetic correlation models (IVIVC) are a fundamental part of the drug discovery and development process. The ability to accurately predict the in vivo pharmacokinetic profile of a drug based on in vitro observations can have several applications during a successful development process. Objective: To develop a comprehensive model to predict the in vivo absorption of antiretroviral drugs based on permeability studies, in vitro and in vivo solubility and demonstrate its correlation with the pharmacokinetic profile in humans. Methods: Analytical tools to test the biopharmaceutical properties of stavudine, lamivudine y zidovudine were developed. The kinetics of dissolution, permeability in caco-2 cells and pharmacokinetics of absorption in rabbits and healthy volunteers were evaluated. Results: The cumulative areas under the curve (AUC) obtained in the permeability study with Caco-2 cells, the dissolution study and the pharmacokinetics in rabbits correlated with the cumulative AUC values in humans. These results demonstrated a direct relation between in vitro data and absorption, both in humans and in the in vivo model. Conclusions: The analytical methods and procedures applied to the development of an IVIVC model showed a strong correlation among themselves. These IVIVC models are proposed as alternative and cost/effective methods to evaluate the biopharmaceutical properties that determine the bioavailability of a drug and their application includes the development process, quality assurance, bioequivalence studies and pharmacosurveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) have been used in cell replacement therapies for connective tissue damage, but also can stimulate wound healing through paracrine activity. In order to further understand the potential use of MSCs to treat dogs with neurological disorders, this study examined the paracrine action of adipose-derived canine MSCs on neuronal and endothelial cell models. The culture-expanded MSCs exhibited a MSC phenotype according to plastic adherence, cell morphology, CD profiling and differentiation potential along mesenchymal lineages. Treating the SH-SY5Y neuronal cell line with serum-free MSC culture-conditioned medium (MSC CM) significantly increased SH-SY5Y cell proliferation (P < 0.01), neurite outgrowth (P = 0.0055) and immunopositivity for the neuronal marker βIII-tubulin (P = 0.0002). Treatment of the EA.hy926 endothelial cell line with MSC CM significantly increased the rate of wound closure in endothelial cell scratch wound assays (P = 0.0409), which was associated with significantly increased endothelial cell proliferation (P < 0.05) and migration (P = 0.0001). Furthermore, canine MSC CM induced endothelial tubule formation in EA.hy926 cells in a soluble basement membrane matrix. Hence, this study has demonstrated that adipose-derived canine MSC CM stimulated neuronal and endothelial cells probably through the paracrine activity of MSC-secreted factors. This supports the use of canine MSC transplants or their secreted products in the clinical treatment of dogs with neurological disorders and provides some insight into possible mechanisms of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phosphatidylinositide 3-kinases (PI3K) and mammalian target of rapamycin-1 (mTOR1) are two key targets for anti-cancer therapy. Predicting the response of the PI3K/AKT/mTOR1 signalling pathway to targeted therapy is made difficult because of network complexities. Systems biology models can help explore those complexities but the value of such models is dependent on accurate parameterisation. Motivated by a need to increase accuracy in kinetic parameter estimation, and therefore the predictive power of the model, we present a framework to integrate kinetic data from enzyme assays into a unified enzyme kinetic model. We present exemplar kinetic models of PI3K and mTOR1, calibrated on in vitro enzyme data and founded on Michaelis-Menten (MM) approximation. We describe the effects of an allosteric mTOR1 inhibitor (Rapamycin) and ATP-competitive inhibitors (BEZ2235 and LY294002) that show dual inhibition of mTOR1 and PI3K. We also model the kinetics of phosphatase and tensin homolog (PTEN), which modulates sensitivity of the PI3K/AKT/mTOR1 pathway to these drugs. Model validation with independent data sets allows investigation of enzyme function and drug dose dependencies in a wide range of experimental conditions. Modelling of the mTOR1 kinetics showed that Rapamycin has an IC50 independent of ATP concentration and that it is a selective inhibitor of mTOR1 substrates S6K1 and 4EBP1: it retains 40% of mTOR1 activity relative to 4EBP1 phosphorylation and inhibits completely S6K1 activity. For the dual ATP-competitive inhibitors of mTOR1 and PI3K, LY294002 and BEZ235, we derived the dependence of the IC50 on ATP concentration that allows prediction of the IC50 at different ATP concentrations in enzyme and cellular assays. Comparison of the drug effectiveness in enzyme and cellular assays showed that some features of these drugs arise from signalling modulation beyond the on-target action and MM approximation and require a systems-level consideration of the whole PI3K/PTEN/AKT/mTOR1 network in order to understand mechanisms of drug sensitivity and resistance in different cancer cell lines. We suggest that using these models in systems biology investigation of the PI3K/AKT/mTOR1 signalling in cancer cells can bridge the gap between direct drug target action and the therapeutic response to these drugs and their combinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of polycaprolactone (PCL) as a biomaterial, especially in the fields of drug delivery and tissue engineering, has enjoyed significant growth. Understanding how such a device or scaffold eventually degrades in vivo is paramount as the defect site regenerates and remodels. Degradation studies of three-dimensional PCL and PCL-based composite scaffolds were conducted in vitro (in phosphate buffered saline) and in vivo (rabbit model). Results up to 6 months are reported. All samples recorded virtually no molecular weight changes after 6 months, with a maximum mass loss of only about 7% from the PCL-composite scaffolds degraded in vivo, and a minimum of 1% from PCL scaffolds. Overall, crystallinity increased slightly because of the effects of polymer recrystallization. This was also a contributory factor for the observed stiffness increment in some of the samples, while only the PCL-composite scaffold registered a decrease. Histological examination of the in vivo samples revealed good biocompatibility, with no adverse host tissue reactions up to 6 months. Preliminary results of medical-grade PCL scaffolds, which were implanted for 2 years in a critical-sized rabbit calvarial defect site, are also reported here and support our scaffold design goal for gradual and late molecular weight decreases combined with excellent long-term biocompatibility and bone regeneration. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 90A: 906-919, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two common methods have been used to evaluate the in vitro bioactivity of bioceramics for the application of bone repair. One is to evaluate the ability of apatite formation by soaking ceramics in simulated body fluids (SBF); the other method is to evaluate the effect of ceramics on osteogenic differentiation using cell experiments. Both methods have their own drawbacks in evaluating the in vitro bioactivity of bioceramics. In this commentary paper we review the application of both methods in bioactivity of bioceramics and conclude that (i) SBF method is an efficient method to investigate the in vitro bioactivity of silicate-based bioceramics, (ii) cellular bioactivity of bioceramics should be investigated by evaluating their stimulatory ability using standard bioceramics as controls; and (iii) the combination of these two methods to evaluate the in vitro bioactivity of bioceramics can improve the screening efficiency for the selection of bioactive ceramics for bone regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a nanofiber mesh made by co-electrospinning medical grade poly(epsilon-caprolactone) and collagen (mPCL/Col) was fabricated and studied. Its mechanical properties and characteristics were analyzed and compared to mPCL meshes. mPCL/Col meshes showed a reduction in strength but an increase in ductility when compared to PCL meshes. In vitro assays revealed that mPCL/Col supported the attachment and proliferation of smooth muscle cells on both sides of the mesh. In vivo studies in the corpus cavernosa of rabbits revealed that the mPCL/Col scaffold used in conjunction with autologous smooth muscle cells resulted in better integration with host tissue when compared to cell free scaffolds. On a cellular level preseeded scaffolds showed a minimized foreign body reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultraviolet radiation (UV) is the carcinogen that causes the most common malignancy in humans – skin cancer. However, moderate UV exposure is essential for producing vitaminDin our skin. VitaminDincreases the absorption of calcium from the diet, and adequate calcium is necessary for the building and maintenance of bones. Thus, low levels of vitamin D can cause osteomalacia and rickets and contribute to osteoporosis. Emerging evidence also suggests vitamin D may protect against falls, internal cancers, psychiatric conditions, autoimmune diseases and cardiovascular diseases. Since the dominant source of vitamin D is sunlight exposure, there is a need to understand what is a “balanced” level of sun exposure to maintain an adequate level of vitamin D but minimise the risks of eye damage, skin damage and skin cancer resulting from excessive UV exposure. There are many steps in the pathway from incoming solar UV to the eventual vitamin D status of humans (measured as 25-hydroxyvitamin D in the blood), and our knowledge about many of these steps is currently incomplete. This project begins by investigating the levels of UV available for synthesising vitamin D, and how these levels vary across seasons, latitudes and times of the day. The thesis then covers experiments conducted with an in vitro model, which was developed to study several aspects of vitamin D synthesis. Results from the model suggest the relationship between UV dose and vitamin D is not linear. This is an important input into public health messages regarding ‘safe’ UV exposure: larger doses of UV, beyond a certain limit, may not continue to produce vitamin D; however, they will increase the risk of skin cancers and eye damage. The model also showed that, when given identical doses of UV, the amount of vitamin D produced was impacted by temperature. In humans, a temperature-dependent reaction must occur in the top layers of human skin, prior to vitamin D entering the bloodstream. The hypothesis will be raised that cooler temperatures (occurring in winter and at high latitudes) may reduce vitamin D production in humans. Finally, the model has also been used to study the wavelengths of UV thought to be responsible for producing vitamin D. It appears that vitamin D production is limited to a small range of UV wavelengths, which may be narrower than previously thought. Together, these results suggest that further research is needed into the ability of humans to synthesise vitamin D from sunlight. In particular, more information is needed about the dose-response relationship in humans and to investigate the proposed impact of temperature. Having an accurate action spectrum will also be essential for measuring the available levels of vitamin D-effective UV. As this research continues, it will contribute to the scientific evidence-base needed for devising a public health message that will balance the risks of excessive UV exposure with maintaining adequate vitamin D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic the actual situation, and subsequent analyses and derived mechanisms must be treated with caution and should always be supported by actual long-term degradation data obtained under physiological conditions. Our studies revealed that polycaprolactone (PCL) and PCL-composite scaffolds degrade very differently under these different degradation conditions, whilst still undergoing hydrolysis. Molecular weight and mass loss results differ due to the different degradation pathways followed (surface degradation pathway for accelerated conditions and bulk degradation pathway for simulated physiological conditions). Crystallinity studies revealed similar patterns of recrystallization dynamics, and mechanical data indicated that the scaffolds retained their functional stability, in both instances, over the course of degradation. Ultimately, polymer degradation was shown to be chiefly governed by molecular weight, crystallinity susceptibility to hydrolysis and device architecture considerations whilst maintaining its thermodynamic equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Articular cartilage exhibits limited intrinsic regenerative capacity and focal tissue defects can lead to the development of osteoarthritis (OA), a painful and debilitating loss of cartilage tissue. In Australia, 1.4 million people are affected by OA and its prevalence is increasing in line with current demographics. As treatment options are limited, new therapeutic approaches are being investigated including biological resurfacing of joints with tissue-engineered cartilage. Despite some progress in the field, major challenges remain to be addressed for large scale clinical success. For example, large numbers of chondrogenic cells are required for cartilage formation, but chondrocytes lose their chondrogenic phenotype (dedifferentiate) during in vitro propagation. Additionally, the zonal organization of articular cartilage is critical for normal cartilage function, but development of zonal structure has been largely neglected in cartilage repair strategies. Therefore, we hypothesised that culture conditions for freshly isolated human articular chondrocytes from non-OA and OA sources can be improved by employing microcarrier cultures and a reduced oxygen environment and that oxygen is a critical factor in the maintenance of the zonal chondrocyte phenotype. Microcarriers have successfully been used to cultivate bovine chondrocytes, and offer a potential alternative for clinical expansion of human chondrocytes. We hypothesised that improved yields can be achieved by propagating human chondrocytes on microcarriers. We found that cells on microcarriers acquired a flattened, polygonal morphology and initially proliferated faster than monolayercultivated cells. However, microcarrier cultivation over four weeks did not improve growth rates or the chondrogenic potential of non-OA and OA human articular chondrocytes over conventional monolayer cultivation. Based on these observations, we aimed to optimise culture conditions by modifying oxygen tension, to more closely reflect the in vivo environment. We found that propagation at 5% oxygen tension (moderate hypoxia) did not improve proliferation or redifferentiation capacity of human osteoarthritic chondrocytes. Moderate hypoxia increased the expression of chondrogenic markers during redifferentiation. However, osteoarthritic chondrocytes cultivated on microcarriers exhibited lower expression levels of chondrogenic surface marker proteins and had at best equivalent redifferentiation capacities compared to monolayer-cultured cells. This suggests that monolayer culture with multiple passaging potentially selects for a subpopulation of cells with higher differentiation capacity, which are otherwise rare in osteoarthritic, aged cartilage. However, fibroblastic proteins were found to be highly expressed in all cultures of human osteoarthritic chondrocytes indicating the presence of a high proportion of dedifferentiated, senescent cells with a chondrocytic phenotype that was not rescued by moderate hypoxia. The different zones of cartilage support chondrocyte subpopulations, which exhibit characteristic protein expression and experience varying oxygen tensions. We, therefore, hypothesised that oxygen tension affects the zonal marker expression of human articular chondrocytes isolated from the different cartilage layers. We found that zonal chondrocytes maintained these phenotypic differences during in vitro cultivation. Low oxygen environments favoured the expression of the zonal marker proteoglycan 4 in superficial cells, most likely through the promotion of chondrogenesis. The putative zonal markers clusterin and cartilage intermediate layer protein were found to be expressed by all subpopulations of human osteoarthritic chondrocytes ex vivo and, thus, may not be reliable predictors of in vitro stratification using these clinically relevant cells. The findings in this thesis underline the importance of considering low oxygen conditions and zonal stratification when creating native-like cartilaginous constructs. We have not yet found the right cues to successfully cultivate clinically-relevant human osteoarthritic chondrocytes in vitro. A more thorough understanding of chondrocyte biology and the processes of chondrogenesis are required to ensure the clinical success of cartilage tissue engineering.